694 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Online change detection for energy-efficient mobilec crowdsensing

    Get PDF
    Mobile crowdsensing is power hungry since it requires continuously and simultaneously sensing, processing and uploading fused data from various sensor types including motion sensors and environment sensors. Realizing that being able to pinpoint change points of contexts enables energy-efficient mobile crowdsensing, we modify histogram-based techniques to efficiently detect changes, which has less computational complexity and performs better than the conventional techniques. To evaluate our proposed technique, we conducted experiments on real audio databases comprising 200 sound tracks. We also compare our change detection with multivariate normal distribution and one-class support vector machine. The results show that our proposed technique is more practical for mobile crowdsensing. For example, we show that it is possible to save 80% resource compared to standard continuous sensing while remaining detection sensitivity above 95%. This work enables energy-efficient mobile crowdsensing applications by adapting to contexts

    Map++: A Crowd-sensing System for Automatic Map Semantics Identification

    Full text link
    Digital maps have become a part of our daily life with a number of commercial and free map services. These services have still a huge potential for enhancement with rich semantic information to support a large class of mapping applications. In this paper, we present Map++, a system that leverages standard cell-phone sensors in a crowdsensing approach to automatically enrich digital maps with different road semantics like tunnels, bumps, bridges, footbridges, crosswalks, road capacity, among others. Our analysis shows that cell-phones sensors with humans in vehicles or walking get affected by the different road features, which can be mined to extend the features of both free and commercial mapping services. We present the design and implementation of Map++ and evaluate it in a large city. Our evaluation shows that we can detect the different semantics accurately with at most 3% false positive rate and 6% false negative rate for both vehicle and pedestrian-based features. Moreover, we show that Map++ has a small energy footprint on the cell-phones, highlighting its promise as a ubiquitous digital maps enriching service.Comment: Published in the Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (IEEE SECON 2014

    How data will transform industrial processes: crowdsensing, crowdsourcing and big data as pillars of industry 4.0

    Get PDF
    We are living in the era of the fourth industrial revolution, namely Industry 4.0. This paper presents themain aspects related to Industry 4.0, the technologies thatwill enable this revolution, and the main application domains thatwill be affected by it. The effects that the introduction of Internet of Things (IoT), Cyber-Physical Systems (CPS), crowdsensing, crowdsourcing, cloud computing and big data will have on industrial processeswill be discussed. Themain objectiveswill be represented by improvements in: production efficiency, quality and cost-effectiveness; workplace health and safety, as well as quality of working conditions; products' quality and availability, according to mass customisation requirements. The paper will further discuss the common denominator of these enhancements, i.e., data collection and analysis. As data and information will be crucial for Industry 4.0, crowdsensing and crowdsourcing will introduce new advantages and challenges, which will make most of the industrial processes easier with respect to traditional technologies

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Quantifying User Reputation Scores, Data Trustworthiness, and User Incentives in Mobile Crowd-Sensing

    Get PDF
    Ubiquity of mobile devices with rich sensory capabilities has given rise to the mobile crowd-sensing (MCS) concept, in which a central authority (the platform) and its participants (mobile users) work collaboratively to acquire sensory data over a wide geographic area. Recent research in MCS highlights the following facts: 1) a utility metric can be defined for both the platform and the users, quantifying the value received by either side; 2) incentivizing the users to participate is a non-trivial challenge; 3) correctness and truthfulness of the acquired data must be verified, because the users might provide incorrect or inaccurate data, whether due to malicious intent or malfunctioning devices; and 4) an intricate relationship exists among platform utility, user utility, user reputation, and data trustworthiness, suggesting a co-quantification of these inter-related metrics. In this paper, we study two existing approaches that quantify crowd-sensed data trustworthiness, based on statistical and vote-based user reputation scores. We introduce a new metric - collaborative reputation scores - to expand this definition. Our simulation results show that collaborative reputation scores can provide an effective alternative to the previously proposed metrics and are able to extend crowd sensing to applications that are driven by a centralized as well as decentralized control

    Reliable Federated Learning for Mobile Networks

    Full text link
    Federated learning, as a promising machine learning approach, has emerged to leverage a distributed personalized dataset from a number of nodes, e.g., mobile devices, to improve performance while simultaneously providing privacy preservation for mobile users. In the federated learning, training data is widely distributed and maintained on the mobile devices as workers. A central aggregator updates a global model by collecting local updates from mobile devices using their local training data to train the global model in each iteration. However, unreliable data may be uploaded by the mobile devices (i.e., workers), leading to frauds in tasks of federated learning. The workers may perform unreliable updates intentionally, e.g., the data poisoning attack, or unintentionally, e.g., low-quality data caused by energy constraints or high-speed mobility. Therefore, finding out trusted and reliable workers in federated learning tasks becomes critical. In this article, the concept of reputation is introduced as a metric. Based on this metric, a reliable worker selection scheme is proposed for federated learning tasks. Consortium blockchain is leveraged as a decentralized approach for achieving efficient reputation management of the workers without repudiation and tampering. By numerical analysis, the proposed approach is demonstrated to improve the reliability of federated learning tasks in mobile networks
    • …
    corecore