5,098 research outputs found

    Social Welfare in One-sided Matching Markets without Money

    Get PDF
    We study social welfare in one-sided matching markets where the goal is to efficiently allocate n items to n agents that each have a complete, private preference list and a unit demand over the items. Our focus is on allocation mechanisms that do not involve any monetary payments. We consider two natural measures of social welfare: the ordinal welfare factor which measures the number of agents that are at least as happy as in some unknown, arbitrary benchmark allocation, and the linear welfare factor which assumes an agent's utility linearly decreases down his preference lists, and measures the total utility to that achieved by an optimal allocation. We analyze two matching mechanisms which have been extensively studied by economists. The first mechanism is the random serial dictatorship (RSD) where agents are ordered in accordance with a randomly chosen permutation, and are successively allocated their best choice among the unallocated items. The second mechanism is the probabilistic serial (PS) mechanism of Bogomolnaia and Moulin [8], which computes a fractional allocation that can be expressed as a convex combination of integral allocations. The welfare factor of a mechanism is the infimum over all instances. For RSD, we show that the ordinal welfare factor is asymptotically 1/2, while the linear welfare factor lies in the interval [.526, 2/3]. For PS, we show that the ordinal welfare factor is also 1/2 while the linear welfare factor is roughly 2/3. To our knowledge, these results are the first non-trivial performance guarantees for these natural mechanisms

    Incentivizing Exploration with Heterogeneous Value of Money

    Full text link
    Recently, Frazier et al. proposed a natural model for crowdsourced exploration of different a priori unknown options: a principal is interested in the long-term welfare of a population of agents who arrive one by one in a multi-armed bandit setting. However, each agent is myopic, so in order to incentivize him to explore options with better long-term prospects, the principal must offer the agent money. Frazier et al. showed that a simple class of policies called time-expanded are optimal in the worst case, and characterized their budget-reward tradeoff. The previous work assumed that all agents are equally and uniformly susceptible to financial incentives. In reality, agents may have different utility for money. We therefore extend the model of Frazier et al. to allow agents that have heterogeneous and non-linear utilities for money. The principal is informed of the agent's tradeoff via a signal that could be more or less informative. Our main result is to show that a convex program can be used to derive a signal-dependent time-expanded policy which achieves the best possible Lagrangian reward in the worst case. The worst-case guarantee is matched by so-called "Diamonds in the Rough" instances; the proof that the guarantees match is based on showing that two different convex programs have the same optimal solution for these specific instances. These results also extend to the budgeted case as in Frazier et al. We also show that the optimal policy is monotone with respect to information, i.e., the approximation ratio of the optimal policy improves as the signals become more informative.Comment: WINE 201

    Car Travel Time Variability on Links of a Radial Route in London: Methodology, Surveys and Data Processing

    Get PDF
    This working paper is one of a series of three describing research on travel time variability of car drivers using a north London corridor. The objectives of the work described in this report were to determine the amount of variability experienced within short time periods and between time periods, and to explain these variations in terms of simultaneously-recorded traffic factors. This report describes the methodology used, the surveys carried out and the data processing procedures. Data were collected on twelve contiguous links on the A41 between 0730 and 1030 on weekdays in spring and again in summer. Link travel-time distributions for cars were obtained by registration-plate matching using hand-held electronic data loggers. The methods of treatment of spurious matches and outliers, resulting respectively from chance matching of partial registration numbers and from stopping or diverting vehicles, are described. The reasons for selecting particular explanatory traffic variables are presented, together with a description of the methods of data collection. The results of these surveys and their analysis are contained in ITS Working Paper 279. The methodology, data collection procedure and analysis of journey time variability experienced by a panel of car commuters using the same corridor are contained in ITS Working Paper 277

    Relaxing the Irrevocability Requirement for Online Graph Algorithms

    Get PDF
    Online graph problems are considered in models where the irrevocability requirement is relaxed. Motivated by practical examples where, for example, there is a cost associated with building a facility and no extra cost associated with doing it later, we consider the Late Accept model, where a request can be accepted at a later point, but any acceptance is irrevocable. Similarly, we also consider a Late Reject model, where an accepted request can later be rejected, but any rejection is irrevocable (this is sometimes called preemption). Finally, we consider the Late Accept/Reject model, where late accepts and rejects are both allowed, but any late reject is irrevocable. For Independent Set, the Late Accept/Reject model is necessary to obtain a constant competitive ratio, but for Vertex Cover the Late Accept model is sufficient and for Minimum Spanning Forest the Late Reject model is sufficient. The Matching problem has a competitive ratio of 2, but in the Late Accept/Reject model, its competitive ratio is 3/2
    • …
    corecore