2,681 research outputs found

    Probabilistic Programming Concepts

    Full text link
    A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been developed since more than 20 years

    Bayesian quantification for coherent anti-Stokes Raman scattering spectroscopy

    Full text link
    We propose a Bayesian statistical model for analyzing coherent anti-Stokes Raman scattering (CARS) spectra. Our quantitative analysis includes statistical estimation of constituent line-shape parameters, underlying Raman signal, error-corrected CARS spectrum, and the measured CARS spectrum. As such, this work enables extensive uncertainty quantification in the context of CARS spectroscopy. Furthermore, we present an unsupervised method for improving spectral resolution of Raman-like spectra requiring little to no \textit{a priori} information. Finally, the recently-proposed wavelet prism method for correcting the experimental artefacts in CARS is enhanced by using interpolation techniques for wavelets. The method is validated using CARS spectra of adenosine mono-, di-, and triphosphate in water, as well as, equimolar aqueous solutions of D-fructose, D-glucose, and their disaccharide combination sucrose

    Logic-Based Decision Support for Strategic Environmental Assessment

    Full text link
    Strategic Environmental Assessment is a procedure aimed at introducing systematic assessment of the environmental effects of plans and programs. This procedure is based on the so-called coaxial matrices that define dependencies between plan activities (infrastructures, plants, resource extractions, buildings, etc.) and positive and negative environmental impacts, and dependencies between these impacts and environmental receptors. Up to now, this procedure is manually implemented by environmental experts for checking the environmental effects of a given plan or program, but it is never applied during the plan/program construction. A decision support system, based on a clear logic semantics, would be an invaluable tool not only in assessing a single, already defined plan, but also during the planning process in order to produce an optimized, environmentally assessed plan and to study possible alternative scenarios. We propose two logic-based approaches to the problem, one based on Constraint Logic Programming and one on Probabilistic Logic Programming that could be, in the future, conveniently merged to exploit the advantages of both. We test the proposed approaches on a real energy plan and we discuss their limitations and advantages.Comment: 17 pages, 1 figure, 26th Int'l. Conference on Logic Programming (ICLP'10

    Distributional logic programming for Bayesian knowledge representation

    Get PDF
    We present a formalism for combining logic programming and its flavour of nondeterminism with probabilistic reasoning. In particular, we focus on representing prior knowledge for Bayesian inference. Distributional logic programming (Dlp), is considered in the context of a class of generative probabilistic languages. A characterisation based on probabilistic paths which can play a central role in clausal probabilistic reasoning is presented. We illustrate how the characterisation can be utilised to clarify derived distributions with regards to mixing the logical and probabilistic constituents of generative languages. We use this operational characterisation to define a class of programs that exhibit probabilistic determinism. We show how Dlp can be used to define generative priors over statistical model spaces. For example, a single program can generate all possible Bayesian networks having N nodes while at the same time it defines a prior that penalises networks with large families. Two classes of statistical models are considered: Bayesian networks and classification and regression trees. Finally we discuss: (1) a Metropolis–Hastings algorithm that can take advantage of the defined priors and the probabilistic choice points in the prior programs and (2) its application to real-world machine learning tasks

    Probabilistic (logic) programming concepts

    Get PDF
    A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years

    Online Model-Based Testing under Uncertainty

    Get PDF
    Modern software systems are required to operate in a highly uncertain and changing environment. They have to control the satisfaction of their requirements at run-time, and possibly adapt and cope with situations that have not been completely addressed at design-time. Software engineering methods and techniques are, more than ever, forced to deal with change and uncertainty (lack of knowledge) explicitly. For tackling the challenge posed by uncertainty in delivering more reliable systems, this paper proposes a novel online Model-based Testing technique that complements classic test case generation based on pseudo-random sampling strategies with an uncertainty-aware sampling strategy. To deal with system uncertainty during testing, the proposed strategy builds on an Inverse Uncertainty Quantification approach that is related to the discrepancy between the measured data at run-time (while the system executes) and a Markov Decision Process model describing the behavior of the system under test. To this purpose, a conformance game approach is adopted in which tests feed a Bayesian inference calibrator that continuously learns from test data to tune the system model and the system itself. A comparative evaluation between the proposed uncertainty-aware sampling policy and classical pseudo-random sampling policies is also presented using the Tele Assistance System running example, showing the differences in achieved accuracy and efficiency

    Probabilistic abductive logic programming using Dirichlet priors

    Get PDF
    Probabilistic programming is an area of research that aims to develop general inference algorithms for probabilistic models expressed as probabilistic programs whose execution corresponds to inferring the parameters of those models. In this paper, we introduce a probabilistic programming language (PPL) based on abductive logic programming for performing inference in probabilistic models involving categorical distributions with Dirichlet priors. We encode these models as abductive logic programs enriched with probabilistic definitions and queries, and show how to execute and compile them to boolean formulas. Using the latter, we perform generalized inference using one of two proposed Markov Chain Monte Carlo (MCMC) sampling algorithms: an adaptation of uncollapsed Gibbs sampling from related work and a novel collapsed Gibbs sampling (CGS). We show that CGS converges faster than the uncollapsed version on a latent Dirichlet allocation (LDA) task using synthetic data. On similar data, we compare our PPL with LDA-specific algorithms and other PPLs. We find that all methods, except one, perform similarly and that the more expressive the PPL, the slower it is. We illustrate applications of our PPL on real data in two variants of LDA models (Seed and Cluster LDA), and in the repeated insertion model (RIM). In the latter, our PPL yields similar conclusions to inference with EM for Mallows models
    • …
    corecore