6,409 research outputs found

    Quantifying and Explaining Machine Learning Uncertainty in Predictive Process Monitoring: An Operations Research Perspective

    Full text link
    This paper introduces a comprehensive, multi-stage machine learning methodology that effectively integrates information systems and artificial intelligence to enhance decision-making processes within the domain of operations research. The proposed framework adeptly addresses common limitations of existing solutions, such as the neglect of data-driven estimation for vital production parameters, exclusive generation of point forecasts without considering model uncertainty, and lacking explanations regarding the sources of such uncertainty. Our approach employs Quantile Regression Forests for generating interval predictions, alongside both local and global variants of SHapley Additive Explanations for the examined predictive process monitoring problem. The practical applicability of the proposed methodology is substantiated through a real-world production planning case study, emphasizing the potential of prescriptive analytics in refining decision-making procedures. This paper accentuates the imperative of addressing these challenges to fully harness the extensive and rich data resources accessible for well-informed decision-making

    Human-Art: A Versatile Human-Centric Dataset Bridging Natural and Artificial Scenes

    Full text link
    Humans have long been recorded in a variety of forms since antiquity. For example, sculptures and paintings were the primary media for depicting human beings before the invention of cameras. However, most current human-centric computer vision tasks like human pose estimation and human image generation focus exclusively on natural images in the real world. Artificial humans, such as those in sculptures, paintings, and cartoons, are commonly neglected, making existing models fail in these scenarios. As an abstraction of life, art incorporates humans in both natural and artificial scenes. We take advantage of it and introduce the Human-Art dataset to bridge related tasks in natural and artificial scenarios. Specifically, Human-Art contains 50k high-quality images with over 123k person instances from 5 natural and 15 artificial scenarios, which are annotated with bounding boxes, keypoints, self-contact points, and text information for humans represented in both 2D and 3D. It is, therefore, comprehensive and versatile for various downstream tasks. We also provide a rich set of baseline results and detailed analyses for related tasks, including human detection, 2D and 3D human pose estimation, image generation, and motion transfer. As a challenging dataset, we hope Human-Art can provide insights for relevant research and open up new research questions.Comment: CVPR202

    Bayesian Optimization with Conformal Prediction Sets

    Full text link
    Bayesian optimization is a coherent, ubiquitous approach to decision-making under uncertainty, with applications including multi-arm bandits, active learning, and black-box optimization. Bayesian optimization selects decisions (i.e. objective function queries) with maximal expected utility with respect to the posterior distribution of a Bayesian model, which quantifies reducible, epistemic uncertainty about query outcomes. In practice, subjectively implausible outcomes can occur regularly for two reasons: 1) model misspecification and 2) covariate shift. Conformal prediction is an uncertainty quantification method with coverage guarantees even for misspecified models and a simple mechanism to correct for covariate shift. We propose conformal Bayesian optimization, which directs queries towards regions of search space where the model predictions have guaranteed validity, and investigate its behavior on a suite of black-box optimization tasks and tabular ranking tasks. In many cases we find that query coverage can be significantly improved without harming sample-efficiency.Comment: For code, see https://www.github.com/samuelstanton/conformal-bayesopt.gi

    Model Diagnostics meets Forecast Evaluation: Goodness-of-Fit, Calibration, and Related Topics

    Get PDF
    Principled forecast evaluation and model diagnostics are vital in fitting probabilistic models and forecasting outcomes of interest. A common principle is that fitted or predicted distributions ought to be calibrated, ideally in the sense that the outcome is indistinguishable from a random draw from the posited distribution. Much of this thesis is centered on calibration properties of various types of forecasts. In the first part of the thesis, a simple algorithm for exact multinomial goodness-of-fit tests is proposed. The algorithm computes exact pp-values based on various test statistics, such as the log-likelihood ratio and Pearson\u27s chi-square. A thorough analysis shows improvement on extant methods. However, the runtime of the algorithm grows exponentially in the number of categories and hence its use is limited. In the second part, a framework rooted in probability theory is developed, which gives rise to hierarchies of calibration, and applies to both predictive distributions and stand-alone point forecasts. Based on a general notion of conditional T-calibration, the thesis introduces population versions of T-reliability diagrams and revisits a score decomposition into measures of miscalibration, discrimination, and uncertainty. Stable and efficient estimators of T-reliability diagrams and score components arise via nonparametric isotonic regression and the pool-adjacent-violators algorithm. For in-sample model diagnostics, a universal coefficient of determination is introduced that nests and reinterprets the classical R2R^2 in least squares regression. In the third part, probabilistic top lists are proposed as a novel type of prediction in classification, which bridges the gap between single-class predictions and predictive distributions. The probabilistic top list functional is elicited by strictly consistent evaluation metrics, based on symmetric proper scoring rules, which admit comparison of various types of predictions

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    Assessing performance of artificial neural networks and re-sampling techniques for healthcare datasets.

    Get PDF
    Re-sampling methods to solve class imbalance problems have shown to improve classification accuracy by mitigating the bias introduced by differences in class size. However, it is possible that a model which uses a specific re-sampling technique prior to Artificial neural networks (ANN) training may not be suitable for aid in classifying varied datasets from the healthcare industry. Five healthcare-related datasets were used across three re-sampling conditions: under-sampling, over-sampling and combi-sampling. Within each condition, different algorithmic approaches were applied to the dataset and the results were statistically analysed for a significant difference in ANN performance. The combi-sampling condition showed that four out of the five datasets did not show significant consistency for the optimal re-sampling technique between the f1-score and Area Under the Receiver Operating Characteristic Curve performance evaluation methods. Contrarily, the over-sampling and under-sampling condition showed all five datasets put forward the same optimal algorithmic approach across performance evaluation methods. Furthermore, the optimal combi-sampling technique (under-, over-sampling and convergence point), were found to be consistent across evaluation measures in only two of the five datasets. This study exemplifies how discrete ANN performances on datasets from the same industry can occur in two ways: how the same re-sampling technique can generate varying ANN performance on different datasets, and how different re-sampling techniques can generate varying ANN performance on the same dataset

    Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation

    Get PDF
    This paper is part of the ENHAnCE ITN project (https://www.h2020-enhanceitn.eu/) funded by the European Union's Horizon 2020 research and innovation programme under the Marie SklodowskaCurie grant agreement No. 859957. The authors would like to thank the Lloyd's Register Foundation (LRF), a charitable foundation in the U.K. helping to protect life and property by supporting engineeringrelated education, public engagement, and the application of research. The authors gratefully acknowledge the support of these organizations which have enabled the research reported in this paper.The accurate modeling of engineering systems and processes using Petri nets often results in complex graph representations that are computationally intensive, limiting the potential of this modeling tool in real life applications. This paper presents a methodology to properly define the optimal structure and properties of a reduced Petri net that mimic the output of a reference Petri net model. The methodology is based on Approximate Bayesian Computation to infer the plausible values of the model parameters of the reduced model in a rigorous probabilistic way. Also, the method provides a numerical measure of the level of approximation of the reduced model structure, thus allowing the selection of the optimal reduced structure among a set of potential candidates. The suitability of the proposed methodology is illustrated using a simple illustrative example and a system reliability engineering case study, showing satisfactory results. The results also show that the method allows flexible reduction of the structure of the complex Petri net model taken as reference, and provides numerical justification for the choice of the reduced model structure.European Commission 859957Lloyd's Register Foundation (LRF), a charitable foundation in the U.K

    Statistical-dynamical analyses and modelling of multi-scale ocean variability

    Get PDF
    This thesis aims to provide a comprehensive analysis of multi-scale oceanic variabilities using various statistical and dynamical tools and explore the data-driven methods for correct statistical emulation of the oceans. We considered the classical, wind-driven, double-gyre ocean circulation model in quasi-geostrophic approximation and obtained its eddy-resolving solutions in terms of potential vorticity anomaly and geostrophic streamfunctions. The reference solutions possess two asymmetric gyres of opposite circulations and a strong meandering eastward jet separating them with rich eddy activities around it, such as the Gulf Stream in the North Atlantic and Kuroshio in the North Pacific. This thesis is divided into two parts. The first part discusses a novel scale-separation method based on the local spatial correlations, called correlation-based decomposition (CBD), and provides a comprehensive analysis of mesoscale eddy forcing. In particular, we analyse the instantaneous and time-lagged interactions between the diagnosed eddy forcing and the evolving large-scale PVA using the novel `product integral' characteristics. The product integral time series uncover robust causality between two drastically different yet interacting flow quantities, termed `eddy backscatter'. We also show data-driven augmentation of non-eddy-resolving ocean models by feeding them the eddy fields to restore the missing eddy-driven features, such as the merging western boundary currents, their eastward extension and low-frequency variabilities of gyres. In the second part, we present a systematic inter-comparison of Linear Regression (LR), stochastic and deep-learning methods to build low-cost reduced-order statistical emulators of the oceans. We obtain the forecasts on seasonal and centennial timescales and assess them for their skill, cost and complexity. We found that the multi-level linear stochastic model performs the best, followed by the ``hybrid stochastically-augmented deep learning models''. The superiority of these methods underscores the importance of incorporating core dynamics, memory effects and model errors for robust emulation of multi-scale dynamical systems, such as the oceans.Open Acces

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri

    Annals [...].

    Get PDF
    Pedometrics: innovation in tropics; Legacy data: how turn it useful?; Advances in soil sensing; Pedometric guidelines to systematic soil surveys.Evento online. Coordenado por: Waldir de Carvalho Junior, Helena Saraiva Koenow Pinheiro, Ricardo Simão Diniz Dalmolin
    • …
    corecore