6,692 research outputs found

    Online Anomaly Detection with Sparse Gaussian Processes

    Full text link
    Online anomaly detection of time-series data is an important and challenging task in machine learning. Gaussian processes (GPs) are powerful and flexible models for modeling time-series data. However, the high time complexity of GPs limits their applications in online anomaly detection. Attributed to some internal or external changes, concept drift usually occurs in time-series data, where the characteristics of data and meanings of abnormal behaviors alter over time. Online anomaly detection methods should have the ability to adapt to concept drift. Motivated by the above facts, this paper proposes the method of sparse Gaussian processes with Q-function (SGP-Q). The SGP-Q employs sparse Gaussian processes (SGPs) whose time complexity is lower than that of GPs, thus significantly speeding up online anomaly detection. By using Q-function properly, the SGP-Q can adapt to concept drift well. Moreover, the SGP-Q makes use of few abnormal data in the training data by its strategy of updating training data, resulting in more accurate sparse Gaussian process regression models and better anomaly detection results. We evaluate the SGP-Q on various artificial and real-world datasets. Experimental results validate the effectiveness of the SGP-Q

    Statistical Structure Learning, Towards a Robust Smart Grid

    Full text link
    Robust control and maintenance of the grid relies on accurate data. Both PMUs and state estimators are prone to false data injection attacks. Thus, it is crucial to have a mechanism for fast and accurate detection of an agent maliciously tampering with the data---for both preventing attacks that may lead to blackouts, and for routine monitoring and control tasks of current and future grids. We propose a decentralized false data injection detection scheme based on Markov graph of the bus phase angles. We utilize the Conditional Covariance Test (CCT) to learn the structure of the grid. Using the DC power flow model, we show that under normal circumstances, and because of walk-summability of the grid graph, the Markov graph of the voltage angles can be determined by the power grid graph. Therefore, a discrepancy between calculated Markov graph and learned structure should trigger the alarm. Local grid topology is available online from the protection system and we exploit it to check for mismatch. Should a mismatch be detected, we use correlation anomaly score to detect the set of attacked nodes. Our method can detect the most recent stealthy deception attack on the power grid that assumes knowledge of bus-branch model of the system and is capable of deceiving the state estimator, damaging power network observatory, control, monitoring, demand response and pricing schemes. Specifically, under the stealthy deception attack, the Markov graph of phase angles changes. In addition to detect a state of attack, our method can detect the set of attacked nodes. To the best of our knowledge, our remedy is the first to comprehensively detect this sophisticated attack and it does not need additional hardware. Moreover, our detection scheme is successful no matter the size of the attacked subset. Simulation of various power networks confirms our claims

    AED-Net: An Abnormal Event Detection Network

    Full text link
    It is challenging to detect the anomaly in crowded scenes for quite a long time. In this paper, a self-supervised framework, abnormal event detection network (AED-Net), which is composed of PCAnet and kernel principal component analysis (kPCA), is proposed to address this problem. Using surveillance video sequences of different scenes as raw data, PCAnet is trained to extract high-level semantics of crowd's situation. Next, kPCA,a one-class classifier, is trained to determine anomaly of the scene. In contrast to some prevailing deep learning methods,the framework is completely self-supervised because it utilizes only video sequences in a normal situation. Experiments of global and local abnormal event detection are carried out on UMN and UCSD datasets, and competitive results with higher EER and AUC compared to other state-of-the-art methods are observed. Furthermore, by adding local response normalization (LRN) layer, we propose an improvement to original AED-Net. And it is proved to perform better by promoting the framework's generalization capacity according to the experiments.Comment: 14 pages, 7 figure

    Multi-Task Kernel Null-Space for One-Class Classification

    Full text link
    The one-class kernel spectral regression (OC-KSR), the regression-based formulation of the kernel null-space approach has been found to be an effective Fisher criterion-based methodology for one-class classification (OCC), achieving state-of-the-art performance in one-class classification while providing relatively high robustness against data corruption. This work extends the OC-KSR methodology to a multi-task setting where multiple one-class problems share information for improved performance. By viewing the multi-task structure learning problem as one of compositional function learning, first, the OC-KSR method is extended to learn multiple tasks' structure \textit{linearly} by posing it as an instantiation of the separable kernel learning problem in a vector-valued reproducing kernel Hilbert space where an output kernel encodes tasks' structure while another kernel captures input similarities. Next, a non-linear structure learning mechanism is proposed which captures multiple tasks' relationships \textit{non-linearly} via an output kernel. The non-linear structure learning method is then extended to a sparse setting where different tasks compete in an output composition mechanism, leading to a sparse non-linear structure among multiple problems. Through extensive experiments on different data sets, the merits of the proposed multi-task kernel null-space techniques are verified against the baseline as well as other existing multi-task one-class learning techniques

    Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges

    Full text link
    The widespread popularity of smart meters enables an immense amount of fine-grained electricity consumption data to be collected. Meanwhile, the deregulation of the power industry, particularly on the delivery side, has continuously been moving forward worldwide. How to employ massive smart meter data to promote and enhance the efficiency and sustainability of the power grid is a pressing issue. To date, substantial works have been conducted on smart meter data analytics. To provide a comprehensive overview of the current research and to identify challenges for future research, this paper conducts an application-oriented review of smart meter data analytics. Following the three stages of analytics, namely, descriptive, predictive and prescriptive analytics, we identify the key application areas as load analysis, load forecasting, and load management. We also review the techniques and methodologies adopted or developed to address each application. In addition, we also discuss some research trends, such as big data issues, novel machine learning technologies, new business models, the transition of energy systems, and data privacy and security.Comment: IEEE Transactions on Smart Grid, 201

    Baselining Network-Wide Traffic by Time-Frequency Constrained Stable Principal Component Pursuit

    Full text link
    The Internet traffic analysis is important to network management,and extracting the baseline traffic patterns is especially helpful for some significant network applications.In this paper, we study on the baseline problem of the traffic matrix satisfying a refined traffic matrix decomposition model,since this model extends the assumption of the baseline traffic component to characterize its smoothness, and is more realistic than the existing traffic matrix models. We develop a novel baseline scheme, named Stable Principal Component Pursuit with Time-Frequency Constraints (SPCP-TFC), which extends the Stable Principal Component Pursuit (SPCP) by applying new time-frequency constraints. Then we design an efficient numerical algorithm for SPCP-TFC. At last, we evaluate this baseline scheme through simulations, and show it has superior performance than the existing baseline schemes RBL and PCA.Comment: Accepted to AEU-International Journal of Electronics and Communication

    Robust One-Class Kernel Spectral Regression

    Full text link
    The kernel null-space technique and its regression-based formulation (called one-class kernel spectral regression, a.k.a. OC-KSR) is known to be an effective and computationally attractive one-class classification framework. Despite its outstanding performance, the applicability of kernel null-space method is limited due to its susceptibility to possible training data corruptions and inability to rank training observations according to their conformity with the model. This work addresses these shortcomings by studying the effect of regularising the solution of the null-space kernel Fisher methodology in the context of its regression-based formulation (OC-KSR). In this respect, first, the effect of a Tikhonov regularisation in the Hilbert space is analysed where the one-class learning problem in presence of contaminations in the training set is posed as a sensitivity analysis problem. Next, driven by the success of the sparse representation methodology, the effect of a sparsity regularisation on the solution is studied. For both alternative regularisation schemes, iterative algorithms are proposed which recursively update label confidences and rank training observations based on their fit with the model. Through extensive experiments conducted on different data sets, the proposed methodology is found to enhance robustness against contamination in the training set as compared with the baseline kernel null-space technique as well as other existing approaches in a one-class classification paradigm while providing the functionality to rank training samples effectively

    Nearly second-order asymptotic optimality of sequential change-point detection with one-sample updates

    Full text link
    Sequential change-point detection when the distribution parameters are unknown is a fundamental problem in statistics and machine learning. When the post-change parameters are unknown, we consider a set of detection procedures based on sequential likelihood ratios with non-anticipating estimators constructed using online convex optimization algorithms such as online mirror descent, which provides a more versatile approach to tackle complex situations where recursive maximum likelihood estimators cannot be found. When the underlying distributions belong to a exponential family and the estimators satisfy the logarithm regret property, we show that this approach is nearly second-order asymptotically optimal. This means that the upper bound for the false alarm rate of the algorithm (measured by the average-run-length) meets the lower bound asymptotically up to a log-log factor when the threshold tends to infinity. Our proof is achieved by making a connection between sequential change-point and online convex optimization and leveraging the logarithmic regret bound property of online mirror descent algorithm. Numerical and real data examples validate our theory

    Invisible Units Detection and Estimation Based on Random Matrix Theory

    Full text link
    Invisible units mainly refer to small-scale units that are not monitored by, and thus are not visible to utilities. Integration of these invisible units into power systems does significantly affect the way in which a distribution grid is planned and operated. This paper, based on random matrix theory (RMT), proposes a statistical, data-driven framework to handle the massive grid data, in contrast to its deterministic, model-based counterpart. Combining the RMT-based data-mining framework with conventional techniques, some heuristics are derived as the solution to the invisible units detection and estimation task: linear eigenvalue statistic indicators (LESs) are suggested as the main ingredients of the solution; according to the statistical properties of LESs, the hypothesis testing is formulated to conduct change point detection in the high-dimensional space. The proposed method is promising for anomaly detection and pertinent to current distribution networks---it is capable of detecting invisible power usage and fraudulent behavior while even being able to locate the suspect's location. Case studies, using both simulated data and actual data, validate the proposed method.Comment: 10 pages,Accepted by IEEE Transaction on Power System

    Reduction of Monitoring Register on Software Defined Networks

    Full text link
    Characterization of data network monitoring registers allows for reductions in the number of data, which is essential when the information flow is high, and implementation of processes with short response times, such as interchange of control information between devices and anomaly detection is required. The present investigation applied wavelet transforms, so as to characterize the statistic monitoring register of a software-defined network. Its main contribution lies in the obtention of a record that, although reduced, retains detailed, essential information for the correct application of anomaly detectors.Comment: 8 pages, 5 figure
    corecore