7,111 research outputs found

    Online Anomaly Detection via Class-Imbalance Learning

    Full text link
    Anomaly detection is an important task in many real world applications such as fraud detection, suspicious activity detection, health care monitoring etc. In this paper, we tackle this problem from supervised learning perspective in online learning setting. We maximize well known \emph{Gmean} metric for class-imbalance learning in online learning framework. Specifically, we show that maximizing \emph{Gmean} is equivalent to minimizing a convex surrogate loss function and based on that we propose novel online learning algorithm for anomaly detection. We then show, by extensive experiments, that the performance of the proposed algorithm with respect to sumsum metric is as good as a recently proposed Cost-Sensitive Online Classification(CSOC) algorithm for class-imbalance learning over various benchmarked data sets while keeping running time close to the perception algorithm. Our another conclusion is that other competitive online algorithms do not perform consistently over data sets of varying size. This shows the potential applicability of our proposed approach.Comment: This paper is accepted for publication in IC3 2015, Jaypee Noid

    Evaluation of a Dual Convolutional Neural Network Architecture for Object-wise Anomaly Detection in Cluttered X-ray Security Imagery

    Full text link
    X-ray baggage security screening is widely used to maintain aviation and transport security. Of particular interest is the focus on automated security X-ray analysis for particular classes of object such as electronics, electrical items, and liquids. However, manual inspection of such items is challenging when dealing with potentially anomalous items. Here we present a dual convolutional neural network (CNN) architecture for automatic anomaly detection within complex security X-ray imagery. We leverage recent advances in region-based (R-CNN), mask-based CNN (Mask R-CNN) and detection architectures such as RetinaNet to provide object localisation variants for specific object classes of interest. Subsequently, leveraging a range of established CNN object and fine-grained category classification approaches we formulate within object anomaly detection as a two-class problem (anomalous or benign). While the best performing object localisation method is able to perform with 97.9% mean average precision (mAP) over a six-class X-ray object detection problem, subsequent two-class anomaly/benign classification is able to achieve 66% performance for within object anomaly detection. Overall, this performance illustrates both the challenge and promise of object-wise anomaly detection within the context of cluttered X-ray security imagery.Comment: IJCNN 201

    A Comparison Study of Credit Card Fraud Detection: Supervised versus Unsupervised

    Full text link
    Credit card has become popular mode of payment for both online and offline purchase, which leads to increasing daily fraud transactions. An Efficient fraud detection methodology is therefore essential to maintain the reliability of the payment system. In this study, we perform a comparison study of credit card fraud detection by using various supervised and unsupervised approaches. Specifically, 6 supervised classification models, i.e., Logistic Regression (LR), K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Tree (DT), Random Forest (RF), Extreme Gradient Boosting (XGB), as well as 4 unsupervised anomaly detection models, i.e., One-Class SVM (OCSVM), Auto-Encoder (AE), Restricted Boltzmann Machine (RBM), and Generative Adversarial Networks (GAN), are explored in this study. We train all these models on a public credit card transaction dataset from Kaggle website, which contains 492 frauds out of 284,807 transactions. The labels of the transactions are used for supervised learning models only. The performance of each model is evaluated through 5-fold cross validation in terms of Area Under the Receiver Operating Curves (AUROC). Within supervised approaches, XGB and RF obtain the best performance with AUROC = 0.989 and AUROC = 0.988, respectively. While for unsupervised approaches, RBM achieves the best performance with AUROC = 0.961, followed by GAN with AUROC = 0.954. The experimental results show that supervised models perform slightly better than unsupervised models in this study. Anyway, unsupervised approaches are still promising for credit card fraud transaction detection due to the insufficient annotation and the data imbalance issue in real-world applications

    Feedforward Neural Network for Time Series Anomaly Detection

    Full text link
    Time series anomaly detection is usually formulated as finding outlier data points relative to some usual data, which is also an important problem in industry and academia. To ensure systems working stably, internet companies, banks and other companies need to monitor time series, which is called KPI (Key Performance Indicators), such as CPU used, number of orders, number of online users and so on. However, millions of time series have several shapes (e.g. seasonal KPIs, KPIs of timed tasks and KPIs of CPU used), so that it is very difficult to use a simple statistical model to detect anomaly for all kinds of time series. Although some anomaly detectors have developed many years and some supervised models are also available in this field, we find many methods have their own disadvantages. In this paper, we present our system, which is based on deep feedforward neural network and detect anomaly points of time series. The main difference between our system and other systems based on supervised models is that we do not need feature engineering of time series to train deep feedforward neural network in our system, which is essentially an end-to-end system

    Anomaly Detection in Images

    Full text link
    Visual defect assessment is a form of anomaly detection. This is very relevant in finding faults such as cracks and markings in various surface inspection tasks like pavement and automotive parts. The task involves detection of deviation/divergence of anomalous samples from the normal ones. Two of the major challenges in supervised anomaly detection are the lack of labelled training data and the low availability of anomaly instances. Semi-supervised methods which learn the underlying distribution of the normal samples and then measure the deviation/divergence from the estimated model as the anomaly score have limitations in their overall ability to detect anomalies. This paper proposes the application of network-based deep transfer learning using convolutional neural networks (CNNs) for the task of anomaly detection. Single class SVMs have been used in the past with some success, however we hypothesize that deeper networks for single class classification should perform better. Results obtained on established anomaly detection benchmarks as well as on a real-world dataset, show that the proposed method clearly outperforms the existing state-of-the-art methods, by achieving a staggering average area under the receiver operating characteristic curve value of 0.99 for the tested data-sets which is an average improvement of 41% on the CIFAR10, 20% on MNIST and 16% on Cement Crack data-sets

    A Framework of Sparse Online Learning and Its Applications

    Full text link
    The amount of data in our society has been exploding in the era of big data today. In this paper, we address several open challenges of big data stream classification, including high volume, high velocity, high dimensionality, high sparsity, and high class-imbalance. Many existing studies in data mining literature solve data stream classification tasks in a batch learning setting, which suffers from poor efficiency and scalability when dealing with big data. To overcome the limitations, this paper investigates an online learning framework for big data stream classification tasks. Unlike some existing online data stream classification techniques that are often based on first-order online learning, we propose a framework of Sparse Online Classification (SOC) for data stream classification, which includes some state-of-the-art first-order sparse online learning algorithms as special cases and allows us to derive a new effective second-order online learning algorithm for data stream classification. In addition, we also propose a new cost-sensitive sparse online learning algorithm by extending the framework with application to tackle online anomaly detection tasks where class distribution of data could be very imbalanced. We also analyze the theoretical bounds of the proposed method, and finally conduct an extensive set of experiments, in which encouraging results validate the efficacy of the proposed algorithms in comparison to a family of state-of-the-art techniques on a variety of data stream classification tasks.Comment: 13 pages, 14 figure

    Usage of multiple RTL features for Earthquake prediction

    Full text link
    We construct a classification model that predicts if an earthquake with the magnitude above a threshold will take place at a given location in a time range 30-180 days from a given moment of time. A common approach is to use expert forecasts based on features like Region-Time-Length (RTL) characteristics. The proposed approach uses machine learning on top of multiple RTL features to take into account effects at various scales and to improve prediction accuracy. For historical data about Japan earthquakes 1992-2005 and predictions at locations given in this database the best model has precision up to ~ 0.95 and recall up to ~ 0.98.Comment: 13 pages, 3 figures, 3 table

    Spatially-weighted Anomaly Detection with Regression Model

    Full text link
    Visual anomaly detection is common in several applications including medical screening and production quality check. Although a definition of the anomaly is an unknown trend in data, in many cases some hints or samples of the anomaly class can be given in advance. Conventional methods cannot use the available anomaly data, and also do not have a robustness of noise. In this paper, we propose a novel spatially-weighted reconstruction-loss-based anomaly detection with a likelihood value from a regression model trained by all known data. The spatial weights are calculated by a region of interest generated from employing visualization of the regression model. We introduce some ways to combine with various strategies to propose a state-of-the-art method. Comparing with other methods on three different datasets, we empirically verify the proposed method performs better than the others.Comment: 4 pages, published as an oral presentation paper at Meeting on Image Recognition and Understanding (MIRU) 201

    Unsupervised Synthesis of Anomalies in Videos: Transforming the Normal

    Full text link
    Abnormal activity recognition requires detection of occurrence of anomalous events that suffer from a severe imbalance in data. In a video, normal is used to describe activities that conform to usual events while the irregular events which do not conform to the normal are referred to as abnormal. It is far more common to observe normal data than to obtain abnormal data in visual surveillance. In this paper, we propose an approach where we can obtain abnormal data by transforming normal data. This is a challenging task that is solved through a multi-stage pipeline approach. We utilize a number of techniques from unsupervised segmentation in order to synthesize new samples of data that are transformed from an existing set of normal examples. Further, this synthesis approach has useful applications as a data augmentation technique. An incrementally trained Bayesian convolutional neural network (CNN) is used to carefully select the set of abnormal samples that can be added. Finally through this synthesis approach we obtain a comparable set of abnormal samples that can be used for training the CNN for the classification of normal vs abnormal samples. We show that this method generalizes to multiple settings by evaluating it on two real world datasets and achieves improved performance over other probabilistic techniques that have been used in the past for this task.Comment: Accepted in IJCNN 201

    MDGAN: Boosting Anomaly Detection Using \\Multi-Discriminator Generative Adversarial Networks

    Full text link
    Anomaly detection is often considered a challenging field of machine learning due to the difficulty of obtaining anomalous samples for training and the need to obtain a sufficient amount of training data. In recent years, autoencoders have been shown to be effective anomaly detectors that train only on "normal" data. Generative adversarial networks (GANs) have been used to generate additional training samples for classifiers, thus making them more accurate and robust. However, in anomaly detection GANs are only used to reconstruct existing samples rather than to generate additional ones. This stems both from the small amount and lack of diversity of anomalous data in most domains. In this study we propose MDGAN, a novel GAN architecture for improving anomaly detection through the generation of additional samples. Our approach uses two discriminators: a dense network for determining whether the generated samples are of sufficient quality (i.e., valid) and an autoencoder that serves as an anomaly detector. MDGAN enables us to reconcile two conflicting goals: 1) generate high-quality samples that can fool the first discriminator, and 2) generate samples that can eventually be effectively reconstructed by the second discriminator, thus improving its performance. Empirical evaluation on a diverse set of datasets demonstrates the merits of our approach
    • …
    corecore