31 research outputs found

    Specification and Runtime Workflow Support in the ASKALON Grid Environment

    Get PDF

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    VLAM-G: Interactive Data Driven Workflow Engine for Grid-Enabled Resources

    Get PDF

    Workflow environments for advanced cyberinfrastructure platforms

    Get PDF
    Progress in science is deeply bound to the effective use of high-performance computing infrastructures and to the efficient extraction of knowledge from vast amounts of data. Such data comes from different sources that follow a cycle composed of pre-processing steps for data curation and preparation for subsequent computing steps, and later analysis and analytics steps applied to the results. However, scientific workflows are currently fragmented in multiple components, with different processes for computing and data management, and with gaps in the viewpoints of the user profiles involved. Our vision is that future workflow environments and tools for the development of scientific workflows should follow a holistic approach, where both data and computing are integrated in a single flow built on simple, high-level interfaces. The topics of research that we propose involve novel ways to express the workflows that integrate the different data and compute processes, dynamic runtimes to support the execution of the workflows in complex and heterogeneous computing infrastructures in an efficient way, both in terms of performance and energy. These infrastructures include highly distributed resources, from sensors and instruments, and devices in the edge, to High-Performance Computing and Cloud computing resources. This paper presents our vision to develop these workflow environments and also the steps we are currently following to achieve it.This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya (contract 2014-SGR-1051). Javier Conejero postdoctoral contract is co-financed by the Ministry of Economy and Competitiveness under Juan de la Cierva Formacion´ postdoctoral fellowship number FJCI-2015-24651. This work is supported by the H2020 mF2C project (730929) and the CLASS project (780622). The participation of Rosa M Badia in the BDEC2 meetings is supported by the EXDCI project (800957). The dislib library developments are partially funded under the project agreement between BSC and FUJITSU.Peer ReviewedPostprint (author's final draft

    Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence

    Get PDF
    The evolution of High-Performance Computing (HPC) platforms enables the design and execution of progressively larger and more complex workflow applications in these systems. The complexity comes not only from the number of elements that compose the workflows but also from the type of computations they perform. While traditional HPC workflows target simulations and modelling of physical phenomena, current needs require in addition data analytics (DA) and artificial intelligence (AI) tasks. However, the development of these workflows is hampered by the lack of proper programming models and environments that support the integration of HPC, DA, and AI, as well as the lack of tools to easily deploy and execute the workflows in HPC systems. To progress in this direction, this paper presents use cases where complex workflows are required and investigates the main issues to be addressed for the HPC/DA/AI convergence. Based on this study, the paper identifies the challenges of a new workflow platform to manage complex workflows. Finally, it proposes a development approach for such a workflow platform addressing these challenges in two directions: first, by defining a software stack that provides the functionalities to manage these complex workflows; and second, by proposing the HPC Workflow as a Service (HPCWaaS) paradigm, which leverages the software stack to facilitate the reusability of complex workflows in federated HPC infrastructures. Proposals presented in this work are subject to study and development as part of the EuroHPC eFlows4HPC project.This work has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland and Norway. In Spain, it has received complementary funding from MCIN/AEI/10.13039/501100011033, Spain and the European Union NextGenerationEU/PRTR (contracts PCI2021-121957, PCI2021-121931, PCI2021-121944, and PCI2021-121927). In Germany, it has received complementary funding from the German Federal Ministry of Education and Research (contracts 16HPC016K, 6GPC016K, 16HPC017 and 16HPC018). In France, it has received financial support from Caisse des dépôts et consignations (CDC) under the action PIA ADEIP (project Calculateurs). In Italy, it has been preliminary approved for complimentary funding by Ministero dello Sviluppo Economico (MiSE) (ref. project prop. 2659). In Norway, it has received complementary funding from the Norwegian Research Council, Norway under project number 323825. In Switzerland, it has been preliminary approved for complimentary funding by the State Secretariat for Education, Research, and Innovation (SERI), Norway. In Poland, it is partially supported by the National Centre for Research and Development under decision DWM/EuroHPCJU/4/2021. The authors also acknowledge financial support by MCIN/AEI /10.13039/501100011033, Spain through the “Severo Ochoa Programme for Centres of Excellence in R&D” under Grant CEX2018-000797-S, the Spanish Government, Spain (contract PID2019-107255 GB) and by Generalitat de Catalunya, Spain (contract 2017-SGR-01414). Anna Queralt is a Serra Húnter Fellow.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2018-000797-S)

    Using a New Event-Based Simulation Framework for Investigating Resource Provisioning in Clouds

    Get PDF

    A characterization of workflow management systems for extreme-scale applications

    Get PDF
    Automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compelling case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. The paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems
    corecore