2,798 research outputs found

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    AdVENTR: Autonomous Robot Navigation in Complex Outdoor Environments

    Full text link
    We present a novel system, AdVENTR for autonomous robot navigation in unstructured outdoor environments that consist of uneven and vegetated terrains. Our approach is general and can enable both wheeled and legged robots to handle outdoor terrain complexity including unevenness, surface properties like poor traction, granularity, obstacle stiffness, etc. We use data from sensors including RGB cameras, 3D Lidar, IMU, robot odometry, and pose information with efficient learning-based perception and planning algorithms that can execute on edge computing hardware. Our system uses a scene-aware switching method to perceive the environment for navigation at any time instant and dynamically switches between multiple perception algorithms. We test our system in a variety of sloped, rocky, muddy, and densely vegetated terrains and demonstrate its performance on Husky and Spot robots

    Enhancing methods for under-canopy unmanned aircraft system based photogrammetry in complex forests for tree diameter measurement

    Get PDF
    The application of Unmanned Aircraft Systems (UAS) beneath the forest canopy provides a potentially valuable alternative to ground-based measurement techniques in areas of dense canopy cover and undergrowth. This research presents results from a study of a consumer-grade UAS flown under the forest canopy in challenging forest and terrain conditions. This UAS was deployed to assess under-canopy UAS photogrammetry as an alternative to field measurements for obtaining stem diameters as well as ultra-high-resolution (~400,000 points/m2) 3D models of forest study sites. There were 378 tape-based diameter measurements collected from 99 stems in a native, unmanaged eucalyptus pulchella forest with mixed understory conditions and steep terrain. These measurements were used as a baseline to evaluate the accuracy of diameter measurements from under-canopy UAS-based photogrammetric point clouds. The diameter measurement accuracy was evaluated without the influence of a digital terrain model using an innovative tape-based method. A practical and detailed methodology is presented for the creation of these point clouds. Lastly, a metric called the Circumferential Completeness Index (CCI) was defined to address the absence of a clearly defined measure of point coverage when measuring stem diameters from forest point clouds. The measurement of the mean CCI is suggested for use in future studies to enable a consistent comparison of the coverage of forest point clouds using different sensors, point densities, trajectories, and methodologies. It was found that root-mean-squared-errors of diameter measurements were 0.011 m in Site 1 and 0.021 m in the more challenging Site 2. The point clouds in this study had a mean validated CCI of 0.78 for Site 1 and 0.7 for Site 2, with a mean unvalidated CCI of 0.86 for Site 1 and 0.89 for Site 2. The results in this study demonstrate that under-canopy UAS photogrammetry shows promise in becoming a practical alternative to traditional field measurements, however, these results are currently reliant upon the operator’s knowledge of photogrammetry and his/her ability to fly manually in object-rich environments. Future work should pursue solutions to autonomous operation, more complete point clouds, and a method for providing scale to point clouds when global navigation satellite systems are unavailable

    Robotic Monitoring of Habitats: the Natural Intelligence Approach

    Get PDF
    In this paper, we first discuss the challenges related to habitat monitoring and review possible robotic solutions. Then, we propose a framework to perform terrestrial habitat monitoring exploiting the mobility of legged robotic systems. The idea is to provide the robot with the Natural Intelligence introduced as the combination of the environment in which it moves, the intelligence embedded in the design of its body, and the algorithms composing its mind. This approach aims to solve the challenges of deploying robots in real natural environments, such as irregular and rough terrains, long-lasting operations, and unexpected collisions, with the final objective of assisting humans in assessing the habitat conservation status. Finally, we present examples of robotic monitoring of habitats in four different environments: forests, grasslands, dunes, and screes

    Robotic Monitoring of Habitats: The Natural Intelligence Approach

    Get PDF
    In this paper, we first discuss the challenges related to habitat monitoring and review possible robotic solutions. Then, we propose a framework to perform terrestrial habitat monitoring exploiting the mobility of legged robotic systems. The idea is to provide the robot with the Natural Intelligence introduced as the combination of the environment in which it moves, the intelligence embedded in the design of its body, and the algorithms composing its mind. This approach aims to solve the challenges of deploying robots in real natural environments, such as irregular and rough terrains, long-lasting operations, and unexpected collisions, with the final objective of assisting humans in assessing the habitat conservation status. Finally, we present examples of robotic monitoring of habitats in four different environments: forests, grasslands, dunes, and screes
    corecore