1,885 research outputs found

    Finding Action Tubes with a Sparse-to-Dense Framework

    Full text link
    The task of spatial-temporal action detection has attracted increasing attention among researchers. Existing dominant methods solve this problem by relying on short-term information and dense serial-wise detection on each individual frames or clips. Despite their effectiveness, these methods showed inadequate use of long-term information and are prone to inefficiency. In this paper, we propose for the first time, an efficient framework that generates action tube proposals from video streams with a single forward pass in a sparse-to-dense manner. There are two key characteristics in this framework: (1) Both long-term and short-term sampled information are explicitly utilized in our spatiotemporal network, (2) A new dynamic feature sampling module (DTS) is designed to effectively approximate the tube output while keeping the system tractable. We evaluate the efficacy of our model on the UCF101-24, JHMDB-21 and UCFSports benchmark datasets, achieving promising results that are competitive to state-of-the-art methods. The proposed sparse-to-dense strategy rendered our framework about 7.6 times more efficient than the nearest competitor.Comment: 5 figures; AAAI 202

    Deep Learning Techniques for Video Instance Segmentation: A Survey

    Full text link
    Video instance segmentation, also known as multi-object tracking and segmentation, is an emerging computer vision research area introduced in 2019, aiming at detecting, segmenting, and tracking instances in videos simultaneously. By tackling the video instance segmentation tasks through effective analysis and utilization of visual information in videos, a range of computer vision-enabled applications (e.g., human action recognition, medical image processing, autonomous vehicle navigation, surveillance, etc) can be implemented. As deep-learning techniques take a dominant role in various computer vision areas, a plethora of deep-learning-based video instance segmentation schemes have been proposed. This survey offers a multifaceted view of deep-learning schemes for video instance segmentation, covering various architectural paradigms, along with comparisons of functional performance, model complexity, and computational overheads. In addition to the common architectural designs, auxiliary techniques for improving the performance of deep-learning models for video instance segmentation are compiled and discussed. Finally, we discuss a range of major challenges and directions for further investigations to help advance this promising research field

    Complex Human Action Recognition Using a Hierarchical Feature Reduction and Deep Learning-Based Method

    Get PDF
    Automated human action recognition is one of the most attractive and practical research fields in computer vision. In such systems, the human action labelling is based on the appearance and patterns of the motions in the video sequences; however, majority of the existing research and most of the conventional methodologies and classic neural networks either neglect or are not able to use temporal information for action recognition prediction in a video sequence. On the other hand, the computational cost of a proper and accurate human action recognition is high. In this paper, we address the challenges of the preprocessing phase, by an automated selection of representative frames from the input sequences. We extract the key features of the representative frame rather than the entire features. We propose a hierarchical technique using background subtraction and HOG, followed by application of a deep neural network and skeletal modelling method. The combination of a CNN and the LSTM recursive network is considered for feature selection and maintaining the previous information; and finally, a Softmax-KNN classifier is used for labelling the human activities. We name our model as “Hierarchical Feature Reduction & Deep Learning”-based action recognition method, or HFR-DL in short. To evaluate the proposed method, we use the UCF101 dataset for the benchmarking which is widely used among researchers in the action recognition research field. The dataset includes 101 complicated activities in the wild. Experimental results show a significant improvement in terms of accuracy and speed in comparison with eight state-of-the-art methods

    Pushing Light-Sheet Microscopy to Greater Depths

    Get PDF
    Light-sheet fluorescence microscopy (LSFM) has established itself as an irreplaceable imaging technique in developmental biology over the past two decades. With its emergence, the extended recording of in toto datasets of developing organisms across scales became possible. Remarkably, LSFM opened the door to new spatio-temporal domains in biology, offering cellular resolution on the one hand, and temporal resolution on the order of seconds on the other hand. As in any fluorescence microscopy technique, LSFM is also affected by image degradation at greater tissue depths. Thus far, this has been addressed by the suppression of scattered light, use of fluorophores emitting in the far red spectrum, multi-view detection and fusion, adaptive optics, as well as different illumination schemes. In this work, I investigate for the first time in vivo optical aberration reduction via refractive index matching in LSFM. Examples are shown on common model organisms as Arabidopsis thalina, Oryzias latipes, Mus musculus, as well as Drosophila. Additionally, I present a novel open-top light-sheet microscope, tailored for high-throughput imaging of mammalian samples, such as early stage mouse embryos. It is based on a three objective geometry, encompassing two opposing detection objective lenses with high light collection efficiency, and an invertedly mounted illumination lens. It bridges the spatial scale between samples by employing an extendible light-sheet illumination via a tunable acoustic gradient index lens. Both parts of this work improve the image quality across the 3D volume of specimens, paving the way for more quantitative recordings at greater tissue depths

    Advances in Monocular Exemplar-based Human Body Pose Analysis: Modeling, Detection and Tracking

    Get PDF
    Esta tesis contribuye en el análisis de la postura del cuerpo humano a partir de secuencias de imágenes adquiridas con una sola cámara. Esta temática presenta un amplio rango de potenciales aplicaciones en video-vigilancia, video-juegos o aplicaciones biomédicas. Las técnicas basadas en patrones han tenido éxito, sin embargo, su precisión depende de la similitud del punto de vista de la cámara y de las propiedades de la escena entre las imágenes de entrenamiento y las de prueba. Teniendo en cuenta un conjunto de datos de entrenamiento capturado mediante un número reducido de cámaras fijas, paralelas al suelo, se han identificado y analizado tres escenarios posibles con creciente nivel de dificultad: 1) una cámara estática paralela al suelo, 2) una cámara de vigilancia fija con un ángulo de visión considerablemente diferente, y 3) una secuencia de video capturada con una cámara en movimiento o simplemente una sola imagen estática

    A chemotaxis model of feather primordia pattern formation during avian development

    Get PDF
    The orderly formation of the avian feather array is a classic example of periodic pattern formation during embryonic development. Various mathematical models have been developed to describe this process, including Turing/activator-inhibitor type reaction-diffusion systems and chemotaxis/mechanical-based models based on cell movement and tissue interactions. In this paper we formulate a mathematical model founded on experimental findings, a set of interactions between the key cellular (dermal and epidermal cell populations) and molecular (fibroblast growth factor, FGF, and bone morphogenetic protein, BMP) players and a medially progressing priming wave that acts as the trigger to initiate patterning. Linear stability analysis is used to show that FGF-mediated chemotaxis of dermal cells is the crucial driver of pattern formation, while perturbations in the form of ubiquitous high BMP expression suppress patterning, consistent with experiments. Numerical simulations demonstrate the capacity of the model to pattern the skin in a spatial-temporal manner analogous to avian feather development. Further, experimental perturbations in the form of bead-displacement experiments are recapitulated and predictions are proposed in the form of blocking mesenchymal cell proliferation

    Phytoplankton dynamics and bio-optical variables associated with Harmful Algal Blooms in aquaculture zones

    Get PDF
    The surveillance of Harmful Algal Blooms (HABs) in aquaculture zones is a crucial component in monitoring and mitigation of adverse effects caused by accumulation of high biomass of algal cells and/or associated toxins. Integrated findings of this thesis strongly stress the significance of synoptic bio-optical and conventional measures for efficient surveillance of HABs and their environmental triggers over required spatio-temporal scales, here shown for a case study in the Ebro Delta, NW Mediterranean. In particular, the installation of an environmental observatory in the Ebro Delta aquaculture area, and the capability of a radiometric sensor system as key component are highly motivated by study results. Yet it was clearly shown that for the interpretation of bio-optical data, detailed knowledge on bloom characteristics is crucial. By such effective coverage of bloom dynamics, combined with insights on environmental scenarios that promote the proliferation of certain taxa, public and private responses can be optimised. In a future scenario, this knowledge can be transferred to predictive models of HABs. In this sense, these future steps may advance towards preventive measures rather than mitigation actions to deal with this environmental hazard

    Characterizing Objects in Images using Human Context

    Get PDF
    Humans have an unmatched capability of interpreting detailed information about existent objects by just looking at an image. Particularly, they can effortlessly perform the following tasks: 1) Localizing various objects in the image and 2) Assigning functionalities to the parts of localized objects. This dissertation addresses the problem of aiding vision systems accomplish these two goals. The first part of the dissertation concerns object detection in a Hough-based framework. To this end, the independence assumption between features is addressed by grouping them in a local neighborhood. We study the complementary nature of individual and grouped features and combine them to achieve improved performance. Further, we consider the challenging case of detecting small and medium sized household objects under human-object interactions. We first evaluate appearance based star and tree models. While the tree model is slightly better, appearance based methods continue to suffer due to deficiencies caused by human interactions. To this end, we successfully incorporate automatically extracted human pose as a form of context for object detection. The second part of the dissertation addresses the tedious process of manually annotating objects to train fully supervised detectors. We observe that videos of human-object interactions with activity labels can serve as weakly annotated examples of household objects. Since such objects cannot be localized only through appearance or motion, we propose a framework that includes human centric functionality to retrieve the common object. Designed to maximize data utility by detecting multiple instances of an object per video, the framework achieves performance comparable to its fully supervised counterpart. The final part of the dissertation concerns localizing functional regions or affordances within objects by casting the problem as that of semantic image segmentation. To this end, we introduce a dataset involving human-object interactions with strong i.e. pixel level and weak i.e. clickpoint and image level affordance annotations. We propose a framework that utilizes both forms of weak labels and demonstrate that efforts for weak annotation can be further optimized using human context

    Vedel-objektiiv abil salvestatud kaugseire piltide analüüs kasutades super-resolutsiooni meetodeid

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneKäesolevas doktoritöös uuriti nii riist- kui ka tarkvaralisi lahendusi piltide töötlemiseks. Riist¬varalise poole pealt pakuti lahenduseks uudset vedelläätse, milles on dielekt¬rilisest elastomeerist kihilise täituriga membraan otse optilisel teljel. Doktoritöö käigus arendati välja kaks prototüüpi kahe erineva dielektrilisest elastomeerist ki¬hilise täituriga, mille aktiivne ala oli ühel juhul 40 ja teisel 20 mm. Läätse töö vas¬tas elastomeeri deformatsiooni mehaanikale ja suhtelistele muutustele fookuskau¬guses. Muutuste demonstreerimiseks meniskis ja läätse fookuskauguse mõõtmiseks kasutati laserkiirt. Katseandmetest selgub, et muutuste tekitamiseks on vajalik pinge vahemikus 50 kuni 750 volti. Tarkvaralise poole pealt pakuti uut satelliitpiltide parandamise süsteemi. Paku¬tud süsteem jagas mürase sisendpildi DT-CWT laineteisenduse abil mitmeteks sagedusalamribadeks. Pärast müra eemaldamist LA-BSF funktsiooni abil suu¬rendati pildi resolutsiooni DWT-ga ja kõrgsagedusliku alamriba piltide interpo¬leerimisega. Interpoleerimise faktor algsele pildile oli pool sellest, mida kasutati kõrgsagedusliku alamriba piltide interpoleerimisel ning superresolutsiooniga pilt rekonst¬rueeriti IDWT abil. Käesolevas doktoritöös pakuti tarkvaraliseks lahenduseks uudset sõnastiku baasil töötavat super-resolutsiooni (SR) meetodit, milles luuakse paarid suure resolutsiooniga (HR) ja madala resolut-siooniga (LR) piltidest. Kõigepealt jagati vastava sõnastiku loomiseks HR ja LR paarid omakorda osadeks. Esialgse HR kujutise saamiseks LR sisendpildist kombineeriti HR osi. HR osad valiti sõnastikust nii, et neile vastavad LR osad oleksid võimalikult lähedased sisendiks olevale LR pil¬dile. Iga valitud HR osa heledust korrigeeriti, et vähendada kõrvuti asuvate osade heleduse erine¬vusi superresolutsiooniga pildil. Plokkide efekti vähendamiseks ar¬vutati saadud SR pildi keskmine ning bikuupinterpolatsiooni pilt. Lisaks pakuti käesolevas doktoritöös välja kernelid, mille tulemusel on võimalik saadud SR pilte teravamaks muuta. Pakutud kernelite tõhususe tõestamiseks kasutati [83] ja [50] poolt pakutud resolutsiooni parandamise meetodeid. Superreso¬lutsiooniga pilt saadi iga kerneli tehtud HR pildi kombineerimise teel alpha blen¬dingu meetodit kasutades. Pakutud meetodeid ja kerneleid võrreldi erinevate tavaliste ja kaasaegsete meetoditega. Kvantita-tiivsetest katseandmetest ja saadud piltide kvaliteedi visuaal¬sest hindamisest selgus, et pakutud meetodid on tavaliste kaasaegsete meetoditega võrreldes paremad.In this thesis, a study of both hardware and software solutions for image enhance¬ment has been done. On the hardware side, a new liquid lens design with a DESA membrane located directly in the optical path has been demonstrated. Two pro¬totypes with two different DESA, which have a 40 and 20 mm active area in diameter, were developed. The lens performance was consistent with the mechan¬ics of elastomer deformation and relative focal length changes. A laser beam was used to show the change in the meniscus and to measure the focal length of the lens. The experimental results demonstrate that voltage in the range of 50 to 750 V is required to create change in the meniscus. On the software side, a new satellite image enhancement system was proposed. The proposed technique decomposed the noisy input image into various frequency subbands by using DT-CWT. After removing the noise by applying the LA-BSF technique, its resolution was enhanced by employing DWT and interpolating the high-frequency subband images. An original image was interpolated with half of the interpolation factor used for interpolating the high-frequency subband images, and the super-resolved image was reconstructed by using IDWT. A novel single-image SR method based on a generating dictionary from pairs of HR and their corresponding LR images was proposed. Firstly, HR and LR pairs were divided into patches in order to make HR and LR dictionaries respectively. The initial HR representation of an input LR image was calculated by combining the HR patches. These HR patches are chosen from the HR dictionary corre-sponding to the LR patches that have the closest distance to the patches of the in¬put LR image. Each selected HR patch was processed further by passing through an illumination enhancement processing order to reduce the noticeable change of illumination between neighbor patches in the super-resolved image. In order to reduce the blocking effect, the average of the obtained SR image and the bicubic interpolated image was calculated. The new kernels for sampling have also been proposed. The kernels can improve the SR by resulting in a sharper image. In order to demonstrate the effectiveness of the proposed kernels, the techniques from [83] and [50] for resolution enhance¬ment were adopted. The super-resolved image was achieved by combining the HR images produced by each of the proposed kernels using the alpha blending tech-nique. The proposed techniques and kernels are compared with various conventional and state-of-the-art techniques, and the quantitative test results and visual results on the final image quality show the superiority of the proposed techniques and ker¬nels over conventional and state-of-art technique
    corecore