989 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Grammatical evolution hyper-heuristic for combinatorial optimization problems

    Get PDF
    Designing generic problem solvers that perform well across a diverse set of problems is a challenging task. In this work, we propose a hyper-heuristic framework to automatically generate an effective and generic solution method by utilizing grammatical evolution. In the proposed framework, grammatical evolution is used as an online solver builder, which takes several heuristic components (e.g., different acceptance criteria and different neighborhood structures) as inputs and evolves templates of perturbation heuristics. The evolved templates are improvement heuristics, which represent a complete search method to solve the problem at hand. To test the generality and the performance of the proposed method, we consider two well-known combinatorial optimization problems: exam timetabling (Carter and ITC 2007 instances) and the capacitated vehicle routing problem (Christofides and Golden instances). We demonstrate that the proposed method is competitive, if not superior, when compared to state-of-the-art hyper-heuristics, as well as bespoke methods for these different problem domains. In order to further improve the performance of the proposed framework we utilize an adaptive memory mechanism, which contains a collection of both high quality and diverse solutions and is updated during the problem solving process. Experimental results show that the grammatical evolution hyper-heuristic, with an adaptive memory, performs better than the grammatical evolution hyper-heuristic without a memory. The improved framework also outperforms some bespoke methodologies, which have reported best known results for some instances in both problem domains

    A large neighbourhood based heuristic for two-echelon routing problems

    Full text link
    In this paper, we address two optimisation problems arising in the context of city logistics and two-level transportation systems. The two-echelon vehicle routing problem and the two-echelon location routing problem seek to produce vehicle itineraries to deliver goods to customers, with transits through intermediate facilities. To efficiently solve these problems, we propose a hybrid metaheuristic which combines enumerative local searches with destroy-and-repair principles, as well as some tailored operators to optimise the selections of intermediate facilities. We conduct extensive computational experiments to investigate the contribution of these operators to the search performance, and measure the performance of the method on both problem classes. The proposed algorithm finds the current best known solutions, or better ones, for 95% of the two-echelon vehicle routing problem benchmark instances. Overall, for both problems, it achieves high-quality solutions within short computing times. Finally, for future reference, we resolve inconsistencies between different versions of benchmark instances, document their differences, and provide them all online in a unified format

    Order Picking Problem in a Warehouse with Bi-Objective Genetic Algorithm Approach: Case Study

    Get PDF
    In this paper, an order picking problem with the capacitated forklift in a warehouse is studied by considering the total distance and the penalized earliness/tardiness. These objectives are important to reduce transportation costs and to satisfy customer expectations. Since this problem has been known as NP-hard, a genetic algorithm (GA) is proposed to solve the bi-objective order picking problem. The proposed approach is applied to auto components industry that produces wire harnesses responsible for all electrical functions in the vehicle. Experimental design is used for tuning the influential parameters of the proposed GA. The GA approach was solved by weighted sum scalarization.

    The stochastic vehicle routing problem : a literature review, part I : models

    Get PDF
    Building on the work of Gendreau et al. (Eur J Oper Res 88(1):3–12; 1996), we review the past 20 years of scientific literature on stochastic vehicle routing problems. The numerous variants of the problem that have been studied in the literature are described and categorized. Keywords: vehicle routing (VRP), stochastic programming, SVRPpublishedVersio

    Routing Unmanned Vehicles in GPS-Denied Environments

    Full text link
    Most of the routing algorithms for unmanned vehicles, that arise in data gathering and monitoring applications in the literature, rely on the Global Positioning System (GPS) information for localization. However, disruption of GPS signals either intentionally or unintentionally could potentially render these algorithms not applicable. In this article, we present a novel method to address this difficulty by combining methods from cooperative localization and routing. In particular, the article formulates a fundamental combinatorial optimization problem to plan routes for an unmanned vehicle in a GPS-restricted environment while enabling localization for the vehicle. We also develop algorithms to compute optimal paths for the vehicle using the proposed formulation. Extensive simulation results are also presented to corroborate the effectiveness and performance of the proposed formulation and algorithms.Comment: Publised in International Conference on Umanned Aerial System
    corecore