3,391 research outputs found

    Redundancy management for efficient fault recovery in NASA's distributed computing system

    Get PDF
    The management of redundancy in computer systems was studied and guidelines were provided for the development of NASA's fault-tolerant distributed systems. Fault recovery and reconfiguration mechanisms were examined. A theoretical foundation was laid for redundancy management by efficient reconfiguration methods and algorithmic diversity. Algorithms were developed to optimize the resources for embedding of computational graphs of tasks in the system architecture and reconfiguration of these tasks after a failure has occurred. The computational structure represented by a path and the complete binary tree was considered and the mesh and hypercube architectures were targeted for their embeddings. The innovative concept of Hybrid Algorithm Technique was introduced. This new technique provides a mechanism for obtaining fault tolerance while exhibiting improved performance

    Decoherence in quantum walks - a review

    Get PDF
    The development of quantum walks in the context of quantum computation, as generalisations of random walk techniques, led rapidly to several new quantum algorithms. These all follow unitary quantum evolution, apart from the final measurement. Since logical qubits in a quantum computer must be protected from decoherence by error correction, there is no need to consider decoherence at the level of algorithms. Nonetheless, enlarging the range of quantum dynamics to include non-unitary evolution provides a wider range of possibilities for tuning the properties of quantum walks. For example, small amounts of decoherence in a quantum walk on the line can produce more uniform spreading (a top-hat distribution), without losing the quantum speed up. This paper reviews the work on decoherence, and more generally on non-unitary evolution, in quantum walks and suggests what future questions might prove interesting to pursue in this area.Comment: 52 pages, invited review, v2 & v3 updates to include significant work since first posted and corrections from comments received; some non-trivial typos fixed. Comments now limited to changes that can be applied at proof stag

    Mapping unstructured grid problems to the connection machine

    Get PDF
    We present a highly parallel graph mapping technique that enables one to solve unstructured grid problems on massively parallel computers. Many implicit and explicit methods for solving discretizated partial differential equations require each point in the discretization to exchange data with its neighboring points every time step or iteration. The time spent communicating can limit the high performance promised by massively parallel computing. To eliminate this bottleneck, we map the graph of the irregular problem to the graph representing the interconnection topology of the computer such that the sum of the distances that the messages travel is minimized. We show that, in comparison to a naive assignment of processors, our heuristic mapping algorithm significantly reduces the communication time on the Connection Machine, CM-2

    A Turaev surface approach to Khovanov homology

    Full text link
    We introduce Khovanov homology for ribbon graphs and show that the Khovanov homology of a certain ribbon graph embedded on the Turaev surface of a link is isomorphic to the Khovanov homology of the link (after a grading shift). We also present a spanning quasi-tree model for the Khovanov homology of a ribbon graph.Comment: 30 pages, 18 figures, added sections on virtual links and Reidemeister move

    The crossing number of locally twisted cubes

    Full text link
    The {\it crossing number} of a graph GG is the minimum number of pairwise intersections of edges in a drawing of GG. Motivated by the recent work [Faria, L., Figueiredo, C.M.H. de, Sykora, O., Vrt'o, I.: An improved upper bound on the crossing number of the hypercube. J. Graph Theory {\bf 59}, 145--161 (2008)] which solves the upper bound conjecture on the crossing number of nn-dimensional hypercube proposed by Erd\H{o}s and Guy, we give upper and lower bounds of the crossing number of locally twisted cube, which is one of variants of hypercube.Comment: 17 pages, 12 figure
    corecore