299 research outputs found

    An Evolutionary Learning Approach for Adaptive Negotiation Agents

    Get PDF
    Developing effective and efficient negotiation mechanisms for real-world applications such as e-Business is challenging since negotiations in such a context are characterised by combinatorially complex negotiation spaces, tough deadlines, very limited information about the opponents, and volatile negotiator preferences. Accordingly, practical negotiation systems should be empowered by effective learning mechanisms to acquire dynamic domain knowledge from the possibly changing negotiation contexts. This paper illustrates our adaptive negotiation agents which are underpinned by robust evolutionary learning mechanisms to deal with complex and dynamic negotiation contexts. Our experimental results show that GA-based adaptive negotiation agents outperform a theoretically optimal negotiation mechanism which guarantees Pareto optimal. Our research work opens the door to the development of practical negotiation systems for real-world applications

    Reaching unanimous agreements within agent-based negotiation teams with linear and monotonic utility functions

    Full text link
    [EN] In this article, an agent-based negotiation model for negotiation teams that negotiate a deal with an opponent is presented. Agent-based negotiation teams are groups of agents that join together as a single negotiation party because they share an interest that is related to the negotiation process. The model relies on a trusted mediator that coordinates and helps team members in the decisions that they have to take during the negotiation process: which offer is sent to the opponent, and whether the offers received from the opponent are accepted. The main strength of the proposed negotiation model is the fact that it guarantees unanimity within team decisions since decisions report a utility to team members that is greater than or equal to their aspiration levels at each negotiation round. This work analyzes how unanimous decisions are taken within the team and the robustness of the model against different types of manipulations. An empirical evaluation is also performed to study the impact of the different parameters of the model.This work is supported by TIN2008-04446, PROMETEO/2008/051, TIN2009-13839-C03-01, CSD2007-00022 of the Spanish government, and FPU Grant AP2008-00600 awarded to Victor Sanchez-Anguix. This paper was recommended by Associate Editor X. Wang.Sanchez-Anguix, V.; Julian Inglada, VJ.; Botti, V.; García-Fornes, A. (2012). Reaching unanimous agreements within agent-based negotiation teams with linear and monotonic utility functions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 42(3):778-792. https://doi.org/10.1109/TSMCB.2011.2177658S77879242

    Compositional Design and Verification of a Multi-Agent System for One-to-Many Negotiation

    Get PDF
    A compositional verification method for multi-agent systems is presented and applied to a multi-agent system for one-to-many negotiation in the domain of load balancing of electricity use. Advantages of the method are that the complexity of the verification process is managed by compositionality, and that parts of the proofs can be reused in relation to reuse of components

    An empirical study of interest-based negotiation

    Get PDF

    Group recommender systems: A multi-agent solution

    Get PDF
    Providing recommendations to groups of users has become a promising research area, since many items tend to be consumed by groups of people. Various techniques have been developed aiming at making recommendations to a group as a whole. Most works use aggregation techniques to combine preferences, recommendations or profiles. However, satisfying all group members in an even way still remains as a challenge. To deal with this problem, we propose an extension of a multi-agent approach based on negotiation techniques for group recommendation. In the approach, we use the multilateral Monotonic Concession Protocol (MCP) to combine individual recommendations into a group recommendation. In this work, we extend the MCP protocol to allow users to personalize the behavior of the agents. This extension was evaluated in two different domains (movies and points of interest) with satisfactory results. We compared our approach against different baselines, namely: a preference aggregation algorithm, a recommendation aggregation algorithm, and a simple one-step negotiation. The results show evidence that, when using our negotiation approach, users in the groups are more uniformly satisfied than with traditional aggregation approaches.Fil: Villavicencio, Christian Paulo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentin

    Studying the Impact of Negotiation Environments on Negotiation Teams' Performance

    Get PDF
    [EN] In this article we study the impact of the negotiation environment on the performance of several intra-team strategies (team dynamics) for agent-based negotiation teams that negotiate with an opponent. An agent-based negotiation team is a group of agents that joins together as a party because they share common interests in the negotiation at hand. It is experimentally shown how negotiation environment conditions like the deadline of both parties, the concession speed of the opponent, similarity among team members, and team size affect performance metrics like the minimum utility of team members, the average utility of team members, and the number of negotiation rounds. Our goal is identifying which intra-team strategies work better in different environmental conditions in order to provide useful knowledge for team members to select appropriate intra-team strategies according to environmental conditions.This work is supported by TIN2011-27652-C03-01, TIN2009-13839-C03-01, CSD2007-00022 of the Spanish Government, and FPU Grant AP2008-00600 awarded to Victor Sanchez-Anguix. We would also like to thank anonymous reviewers and assistants of AAMAS 2011 who helped us to improve our previous work, making this present work possible.Sanchez-Anguix, V.; Julian Inglada, VJ.; Botti, V.; García-Fornes, A. (2013). Studying the impact of negotiation environments on negotiation teams' performance. Information Sciences. 219:17-40. https://doi.org/10.1016/j.ins.2012.07.017S174021

    Modified bargaining protocols for automated negotiation in open multi-agent systems

    Get PDF
    Current research in multi-agent systems (MAS) has advanced to the development of open MAS, which are characterized by the heterogeneity of agents, free exit/entry and decentralized control. Conflicts of interest among agents are inevitable, and hence automated negotiation to resolve them is one of the promising solutions. This thesis studies three modifications on alternating-offer bargaining protocols for automated negotiation in open MAS. The long-term goal of this research is to design negotiation protocols which can be easily used by intelligent agents in accommodating their need in resolving their conflicts. In particular, we propose three modifications: allowing non-monotonic offers during the bargaining (non-monotonic-offers bargaining protocol), allowing strategic delay (delay-based bargaining protocol), and allowing strategic ignorance to augment argumentation when the bargaining comprises argumentation (ignorance-based argumentation-based negotiation protocol). Utility theory and decision-theoretic approaches are used in the theoretical analysis part, with an aim to prove the benefit of these three modifications in negotiation among myopic agents under uncertainty. Empirical studies by means of computer simulation are conducted in analyzing the cost and benefit of these modifications. Social agents, who use common human bargaining strategies, are the subjects of the simulation. In general, we assume that agents are bounded rational with various degrees of belief and trust toward their opponents. In particular in the study of the non-monotonic-offers bargaining protocol, we assume that our agents have diminishing surplus. We further assume that our agents have increasing surplus in the study of delay-based bargaining protocol. And in the study of ignorance-based argumentation-based negotiation protocol, we assume that agents may have different knowledge and use different ontologies and reasoning engines. Through theoretical analysis under various settings, we show the benefit of allowing these modifications in terms of agents’ expected surplus. And through simulation, we show the benefit of allowing these modifications in terms of social welfare (total surplus). Several implementation issues are then discussed, and their potential solutions in terms of some additional policies are proposed. Finally, we also suggest some future work which can potentially improve the reliability of these modifications

    ***Winner of the Best Technical Paper Award***

    Get PDF

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing
    corecore