15,966 research outputs found

    Proxy Signature Scheme with Effective Revocation Using Bilinear Pairings

    Full text link
    We present a proxy signature scheme using bilinear pairings that provides effective proxy revocation. The scheme uses a binding-blinding technique to avoid secure channel requirements in the key issuance stage. With this technique, the signer receives a partial private key from a trusted authority and unblinds it to get his private key, in turn, overcomes the key escrow problem which is a constraint in most of the pairing-based proxy signature schemes. The scheme fulfills the necessary security requirements of proxy signature and resists other possible threats

    The Bosma effect revisited - I. HI and stellar disc scaling models

    Full text link
    The observed proportionality between the centripetal contribution of the dynamically insignificant HI gas in the discs of spiral galaxies and the dominant contribution of DM - the "Bosma effect" - has been repeatedly mentioned in the literature but largely ignored. We have re-examined the evidence for the Bosma effect by fitting Bosma effect models for 17 galaxies in the THINGS data set, either by scaling the contribution of the HI gas alone or by using both the observed stellar disc and HI gas as proxies. The results are compared with two models for exotic cold DM: internally consistent cosmological NFW models with constrained compactness parameters, and URC models using fully unconstrained Burkert density profiles. The Bosma models that use the stellar discs as additional proxies are statistically nearly as good as the URC models and clearly better than the NFW ones. We thus confirm the correlation between the centripetal effects of DM and that of the interstellar medium of spiral galaxies. The edificacy of "maximal disc" models is explained as the natural consequence of "classic" Bosma models which include the stellar disc as a proxy in regions of reduced atomic gas. The standard explanation - that the effect reflects a statistical correlation between the visible and exotic DM - seems highly unlikely, given that the geometric forms and hence centripetal signatures of spherical halo and disc components are so different. A literal interpretation of the Bosma effect as being due to the presence of significant amounts of disc DM requires a median visible baryon to disc DM ratio of about 40%.Comment: Accepted by A&A (Paper I

    Universality of a mesenchymal transition signature in invasive solid cancers

    Get PDF
    In this brief communication, additional computational validation is provided consistent with the unifying hypothesis that a shared biological mechanism of mesenchymal transition, reflected by a precise gene expression signature, may be present in all types of solid cancers when they reach a particular stage of invasiveness

    South Asian monsoon history over the past 60 kyr recorded by radiogenic isotopes and clay mineral assemblages in the Andaman Sea

    Get PDF
    The Late Quaternary variability of the South Asian (or Indian) monsoon has been linked with glacial‐interglacial and millennial scale climatic changes but past rainfall intensity in the river catchments draining into the Andaman Sea remains poorly constrained. Here we use radiogenic Sr, Nd, and Pb isotope compositions of the detrital clay‐size fraction and clay mineral assemblages obtained from sediment core NGHP Site 17 in the Andaman Sea to reconstruct the variability of the South Asian monsoon during the past 60 kyr. Over this time interval εNd values changed little, generally oscillating between −7.3 and −5.3 and the Pb isotope signatures are essentially invariable, which is in contrast to a record located further northeast in the Andaman Sea. This indicates that the source of the detrital clays did not change significantly during the last glacial and deglaciation suggesting the monsoon was spatially stable. The most likely source region is the Irrawaddy river catchment including the Indo‐Burman Ranges with a possible minor contribution from the Andaman Islands. High smectite/(illite + chlorite) ratios (up to 14), as well as low 87Sr/86Sr ratios (0.711) for the Holocene period indicate enhanced chemical weathering and a stronger South Asian monsoon compared to marine oxygen isotope stages 2 and 3. Short, smectite‐poor intervals exhibit markedly radiogenic Sr isotope compositions and document weakening of the South Asian monsoon, which may have been linked to short‐term northern Atlantic climate variability on millennial time scales

    Study the build-up, initiation and acceleration of 2008 April 26 coronal mass ejection observed by STEREO

    Full text link
    In this paper, we analyze the full evolution, from a few days prior to the eruption to the initiation, and the final acceleration and propagation, of the CME that occurred on 2008 April 26 using the unprecedented high cadence and multi-wavelength observations by STEREO. There existed frequent filament activities and EUV jets prior to the CME eruption for a few days. These activities were probably caused by the magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in the sequence of magnetogram images from MDI (Michelson Doppler Imager) onboard SOHO. The slow low-layer magnetic reconnection may be responsible for the storage of magnetic free energy in the corona and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of the flux rope implies that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. During the period of impulsive acceleration, the time profile of the CME acceleration in the inner corona is found to be consistent with the time profile of the reconnection electric field inferred from the footpoint separation and the RHESSI 15-25 keV HXR flux curve of the associated flare. The full evolution of this CME can be described in four distinct phases: the build-up phase, initiation phase, main acceleration phase, and propagation phase. The physical properties and the transition between these phases are discussed, in an attempt to provide a global picture of CME dynamic evolution.Comment: 28 pages, 8 figures, accepted for publication in Ap
    corecore