472 research outputs found

    Theory and Application of Fixed Point

    Get PDF
    In the past few decades, several interesting problems have been solved using fixed point theory. In addition to classical ordinary differential equations and integral equation, researchers also focus on fractional differential equations (FDE) and fractional integral equations (FIE). Indeed, FDE and FIE lead to a better understanding of several physical phenomena, which is why such differential equations have been highly appreciated and explored. We also note the importance of distinct abstract spaces, such as quasi-metric, b-metric, symmetric, partial metric, and dislocated metric. Sometimes, one of these spaces is more suitable for a particular application. Fixed point theory techniques in partial metric spaces have been used to solve classical problems of the semantic and domain theory of computer science. This book contains some very recent theoretical results related to some new types of contraction mappings defined in various types of spaces. There are also studies related to applications of the theoretical findings to mathematical models of specific problems, and their approximate computations. In this sense, this book will contribute to the area and provide directions for further developments in fixed point theory and its applications

    Iterative algorithms for solutions of nonlinear equations in Banach spaces.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF

    Fixed point results of some nonlinear maps with applications

    Get PDF

    Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.In this dissertation, we introduce a self-adaptive hybrid inertial algorithm for approximating a solution of split feasibility problem which also solves a monotone inclusion problem and a fixed point problem in p-uniformly convex and uniformly smooth Banach spaces. We prove a strong convergence theorem for the sequence generated by our algorithm which does not require a prior knowledge of the norm of the bounded linear operator. Numerical examples are given to compare the computational performance of our algorithm with other existing algorithms. Moreover, we present a new iterative algorithm of inertial form for solving Monotone Inclusion Problem (MIP) and common Fixed Point Problem (FPP) of a finite family of demimetric mappings in a real Hilbert space. Motivated by the Armijo line search technique, we incorporate the inertial technique to accelerate the convergence of the proposed method. Under standard and mild assumptions of monotonicity and Lipschitz continuity of the MIP associated mappings, we establish the strong convergence of the iterative algorithm. Some numerical examples are presented to illustrate the performance of our method as well as comparing it with the non-inertial version and some related methods in the literature. Furthermore, we propose a new modified self-adaptive inertial subgradient extragradient algorithm in which the two projections are made onto some half spaces. Moreover, under mild conditions, we obtain a strong convergence of the sequence generated by our proposed algorithm for approximating a common solution of variational inequality problems and common fixed points of a finite family of demicontractive mappings in a real Hilbert space. The main advantages of our algorithm are: strong convergence result obtained without prior knowledge of the Lipschitz constant of the the related monotone operator, the two projections made onto some half-spaces and the inertial technique which speeds up rate of convergence. Finally, we present an application and a numerical example to illustrate the usefulness and applicability of our algorithm
    corecore