25,296 research outputs found

    Computing a Compact Spline Representation of the Medial Axis Transform of a 2D Shape

    Full text link
    We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizing the approximation error between the input shape and the shape represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.Comment: GMP14 (Geometric Modeling and Processing

    Non-Smooth Spatio-Temporal Coordinates in Nonlinear Dynamics

    Full text link
    This paper presents an overview of physical ideas and mathematical methods for implementing non-smooth and discontinuous substitutions in dynamical systems. General purpose of such substitutions is to bring the differential equations of motion to the form, which is convenient for further use of analytical and numerical methods of analyses. Three different types of nonsmooth transformations are discussed as follows: positional coordinate transformation, state variables transformation, and temporal transformations. Illustrating examples are provided.Comment: 15 figure

    Differentiable stability and sphere theorems for manifolds and Einstein manifolds with positive scalar curvature

    Full text link
    Leon Green obtained remarkable rigidity results for manifolds of positive scalar curvature with large conjugate radius and/or injectivity radius. Using Ck,αC^{k,\alpha} convergence techniques, we prove several differentiable stability and sphere theorem versions of these results and apply those also to the study of Einstein manifolds.Comment: 13 pages; final version; accepted for publication in Comm. Anal. Geo

    Modelling the Interfacial Flow of Two Immiscible Liquids in Mixing Processes

    Get PDF
    This paper presents an interface tracking method for modelling the flow of immiscible metallic liquids in mixing processes. The methodology can provide an insight into mixing processes for studying the fundamental morphology development mechanisms for immiscible interfaces. The volume-of-fluid (VOF) method is adopted in the present study, following a review of various modelling approaches for immiscible fluid systems. The VOF method employed here utilises the piecewise linear for interface construction scheme as well as the continuum surface force algorithm for surface force modelling. A model coupling numerical and experimental data is established. The main flow features in the mixing process are investigated. It is observed that the mixing of immiscible metallic liquids is strongly influenced by the viscosity of the system, shear forces and turbulence. The numerical results show good qualitative agreement with experimental results, and are useful for optimisating the design of mixing casting processes

    Finite sections of the Fibonacci Hamiltonian

    Full text link
    We study finite but growing principal square submatrices AnA_n of the one- or two-sided infinite Fibonacci Hamiltonian AA. Our results show that such a sequence (An)(A_n), no matter how the points of truncation are chosen, is always stable -- implying that AnA_n is invertible for sufficiently large nn and An−1→A−1A_n^{-1}\to A^{-1} pointwise

    Application of the continuum shell finite element SHB8PS to sheet forming simulation using an extended large strain anisotropic elastic–plastic formulation

    Get PDF
    http://link.springer.com/article/10.1007%2Fs00419-012-0620-xThis paper proposes an extension of the SHB8PS solid–shell finite element to large strain anisotropic elasto-plasticity, with application to several non-linear benchmark tests including sheet metal forming simulations. This hexahedral linear element has an arbitrary number of integration points distributed along a single line, defining the "thickness" direction; and to control the hourglass modes inherent to this reduced integration, a physical stabilization technique is used. In addition, the assumed strain method is adopted for the elimination of locking. The implementation of the element in Abaqus/Standard via the UEL user subroutine has been assessed through a variety of benchmark problems involving geometric non-linearities, anisotropic plasticity, large deformation and contact. Initially designed for the efficient simulation of elastic–plastic thin structures, the SHB8PS exhibits interesting potentialities for sheet metal forming applications – both in terms of efficiency and accuracy. The element shows good performance on the selected tests, including springback and earing predictions for Numisheet benchmark problems
    • 

    corecore