213 research outputs found

    Many-body models for topological quantum information

    Get PDF
    We develop and investigate several quantum many-body spin models of use for topological quantum information processing and storage. These models fall into two categories: those that are designed to be more realistic than alternative models with similar phenomenology, and those that are designed to have richer phenomenology than related models. In the first category, we present a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the perturbative low-energy limits of entirely two-body Hamiltonians. This construction reproduces the target models' behavior using only couplings which are natural in terms of the original Hamiltonians. As an extension of this work, we construct parent Hamiltonians involving only local 2-body interactions for a broad class of Projected Entangled Pair States (PEPS). We define a perturbative Hamiltonian with a finite order low energy effective Hamiltonian that is a gapped, frustration-free parent Hamiltonian for an encoded version of a desired PEPS. For topologically ordered PEPS, the ground space of the low energy effective Hamiltonian is shown to be in the same phase as the desired state to all orders of perturbation theory. We then move on to define models that generalize the phenomenology of several well-known systems. We first define generalized cluster states based on finite group algebras, and investigate properties of these states including their PEPS representations, global symmetries, relationship to the Kitaev quantum double models, and possible applications. Finally, we propose a generalization of the color codes based on finite groups. For non-Abelian groups, the resulting model supports non-Abelian anyonic quasiparticles and topological order. We examine the properties of these models such as their relationship to Kitaev quantum double models, quasiparticle spectrum, and boundary structure

    Topologically protected localised states in spin chains

    Get PDF
    We consider spin chain families inspired by the Su, Schrieffer and Hegger (SSH) model. We demonstrate explicitly the topologically induced spatial localisation of quantum states in our systems. We present detailed investigations of the effects of random noise, showing that these topologically protected states are very robust against this type of perturbation. Systems with such topological robustness are clearly good candidates for quantum information tasks and we discuss some potential applications. Thus, we present interesting spin chain models which show promising applications for quantum devices

    Quantum control of molecular rotation

    Full text link
    The angular momentum of molecules, or, equivalently, their rotation in three-dimensional space, is ideally suited for quantum control. Molecular angular momentum is naturally quantized, time evolution is governed by a well-known Hamiltonian with only a few accurately known parameters, and transitions between rotational levels can be driven by external fields from various parts of the electromagnetic spectrum. Control over the rotational motion can be exerted in one-, two- and many-body scenarios, thereby allowing to probe Anderson localization, target stereoselectivity of bimolecular reactions, or encode quantum information, to name just a few examples. The corresponding approaches to quantum control are pursued within separate, and typically disjoint, subfields of physics, including ultrafast science, cold collisions, ultracold gases, quantum information science, and condensed matter physics. It is the purpose of this review to present the various control phenomena, which all rely on the same underlying physics, within a unified framework. To this end, we recall the Hamiltonian for free rotations, assuming the rigid rotor approximation to be valid, and summarize the different ways for a rotor to interact with external electromagnetic fields. These interactions can be exploited for control --- from achieving alignment, orientation, or laser cooling in a one-body framework, steering bimolecular collisions, or realizing a quantum computer or quantum simulator in the many-body setting.Comment: 52 pages, 11 figures, 607 reference
    • …
    corecore