1,763 research outputs found

    Low-density MDS codes and factors of complete graphs

    Get PDF
    We present a class of array code of size n×l, where l=2n or 2n+1, called B-Code. The distances of the B-Code and its dual are 3 and l-1, respectively. The B-Code and its dual are optimal in the sense that i) they are maximum-distance separable (MDS), ii) they have an optimal encoding property, i.e., the number of the parity bits that are affected by change of a single information bit is minimal, and iii) they have optimal length. Using a new graph description of the codes, we prove an equivalence relation between the construction of the B-Code (or its dual) and a combinatorial problem known as perfect one-factorization of complete graphs, thus obtaining constructions of two families of the B-Code and its dual, one of which is new. Efficient decoding algorithms are also given, both for erasure correcting and for error correcting. The existence of perfect one-factorizations for every complete graph with an even number of nodes is a 35 years long conjecture in graph theory. The construction of B-Codes of arbitrary odd length will provide an affirmative answer to the conjecture

    Tame Decompositions and Collisions

    Full text link
    A univariate polynomial f over a field is decomposable if f = g o h = g(h) for nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials over a finite field. The tame case, where the characteristic p of Fq does not divide n = deg f, is fairly well-understood, and we have reasonable bounds on the number of decomposables of degree n. Nevertheless, no exact formula is known if nn has more than two prime factors. In order to count the decomposables, one wants to know, under a suitable normalization, the number of collisions, where essentially different (g, h) yield the same f. In the tame case, Ritt's Second Theorem classifies all 2-collisions. We introduce a normal form for multi-collisions of decompositions of arbitrary length with exact description of the (non)uniqueness of the parameters. We obtain an efficiently computable formula for the exact number of such collisions at degree n over a finite field of characteristic coprime to p. This leads to an algorithm for the exact number of decomposable polynomials at degree n over a finite field Fq in the tame case
    corecore