132 research outputs found

    Efficient Variational Bayesian Structure Learning of Dynamic Graphical Models

    Full text link
    Estimating time-varying graphical models are of paramount importance in various social, financial, biological, and engineering systems, since the evolution of such networks can be utilized for example to spot trends, detect anomalies, predict vulnerability, and evaluate the impact of interventions. Existing methods require extensive tuning of parameters that control the graph sparsity and temporal smoothness. Furthermore, these methods are computationally burdensome with time complexity O(NP^3) for P variables and N time points. As a remedy, we propose a low-complexity tuning-free Bayesian approach, named BADGE. Specifically, we impose temporally-dependent spike-and-slab priors on the graphs such that they are sparse and varying smoothly across time. A variational inference algorithm is then derived to learn the graph structures from the data automatically. Owning to the pseudo-likelihood and the mean-field approximation, the time complexity of BADGE is only O(NP^2). Additionally, by identifying the frequency-domain resemblance to the time-varying graphical models, we show that BADGE can be extended to learning frequency-varying inverse spectral density matrices, and yields graphical models for multivariate stationary time series. Numerical results on both synthetic and real data show that that BADGE can better recover the underlying true graphs, while being more efficient than the existing methods, especially for high-dimensional cases

    Sparse Approximate Inference for Spatio-Temporal Point Process Models

    Get PDF
    Spatio-temporal point process models play a central role in the analysis of spatially distributed systems in several disciplines. Yet, scalable inference remains computa- tionally challenging both due to the high resolution modelling generally required and the analytically intractable likelihood function. Here, we exploit the sparsity structure typical of (spatially) discretised log-Gaussian Cox process models by using approximate message-passing algorithms. The proposed algorithms scale well with the state dimension and the length of the temporal horizon with moderate loss in distributional accuracy. They hence provide a flexible and faster alternative to both non-linear filtering-smoothing type algorithms and to approaches that implement the Laplace method or expectation propagation on (block) sparse latent Gaussian models. We infer the parameters of the latent Gaussian model using a structured variational Bayes approach. We demonstrate the proposed framework on simulation studies with both Gaussian and point-process observations and use it to reconstruct the conflict intensity and dynamics in Afghanistan from the WikiLeaks Afghan War Diary

    Accelerating proximal Markov chain Monte Carlo by using an explicit stabilised method

    Get PDF
    We present a highly efficient proximal Markov chain Monte Carlo methodology to perform Bayesian computation in imaging problems. Similarly to previous proximal Monte Carlo approaches, the proposed method is derived from an approximation of the Langevin diffusion. However, instead of the conventional Euler-Maruyama approximation that underpins existing proximal Monte Carlo methods, here we use a state-of-the-art orthogonal Runge-Kutta-Chebyshev stochastic approximation that combines several gradient evaluations to significantly accelerate its convergence speed, similarly to accelerated gradient optimisation methods. The proposed methodology is demonstrated via a range of numerical experiments, including non-blind image deconvolution, hyperspectral unmixing, and tomographic reconstruction, with total-variation and â„“1\ell_1-type priors. Comparisons with Euler-type proximal Monte Carlo methods confirm that the Markov chains generated with our method exhibit significantly faster convergence speeds, achieve larger effective sample sizes, and produce lower mean square estimation errors at equal computational budget.Comment: 28 pages, 13 figures. Accepted for publication in SIAM Journal on Imaging Sciences (SIIMS
    • …
    corecore