8 research outputs found

    Mechanisms of increased arrhythmogenic risk associated with acute regional ischaemia in rabbit: An optical mapping study

    Get PDF
    Acute coronary artery occlusion is the most common cause of sudden cardiac death. In some cases an acute myocardial infarction (MI) can immediately lead to lethal arrhythmias, but the factors that determine whether an MI precipitates arrhythmias are uncertain. In this thesis, I compare and contrast the detailed electrophysiology of hearts that develop arrhythmias post MI compared to those that do not using voltage sensitive fluorescent dyes in isolated rabbit hearts. In an attempt to improve the information from voltage mapping studies, initial work involved attempts to use ratiometric imaging of the fluorescence from the dye RH237. These identified optimal filter settings to collect voltage data at two distinct wavebands that would eliminate movement artefact and permit absolute voltage measurements. But routine implementation of this technique was prevented by additional technical issues related to uneven illumination levels and alignment of the two cameras. In initial studies the drug E-4031, a selective blocker of the delayed rectifier potassium current (IKr), was used to assess the contribution of this channel to repolarisation in rabbit ventricle, both in the steady state at a range of physiological and sub-physiological frequencies and in the transition between step frequency changes. The data suggests that IKr has a small but significant contribution to repolarisation at normal heart rates, 300ms pacing cycle length; a close to maximal concentration of E-4031 (0.03M) increased action potential duration (APD90) by 8.5 ± 1.7ms (P<0.01). This contribution is considerably larger at lower stimulation frequencies; at 1Hz E-4031 increased APD by 73.7 ± 13.7ms (P<0.05). The EC50 for E-4031 in this study was 0.01M which is similar to that reported in the literature. The recovery of the channel from inactivation appeared an important determinant of the rate of adaptation of the action potential duration. In the main experimental section, a novel snare technique was used to produce the acute coronary artery occlusion in the apical region of the left ventricle (LV) free wall. From control experiments (n=21), 47.6% of the hearts develop ventricular fibrillation (VF) within 30 minutes of coronary artery occlusion. On average, hearts with intrinsically longer epicardial action potential duration prior to ischaemia (mean APD50 168.8 ± 5.5ms) did not develop VF, and those with shorter APD (mean APD50 141.5 ± 3.5ms) during pre-occlusion period were more prone to VF (P<0.001). However, artificially prolonging the APD with the drug E-4031 (0.03 concentration) prior to coronary artery occlusion did not significantly change the incidence of arrhythmia. Brief and transient exposure to isoprenaline (0.3Mconcentration) before the occlusion shortened the average APD prior to occlusion but still did not increase the likelihood of VF. Therefore, I concluded that shorter epicardial APD values prior to ischaemia are associated with a higher incidence of arrhythmia but are not the cause. To investigate this further, a panoramic optical mapping technique was used to look at the electrophysiological properties across the entire ventricular surface of the hearts. The panoramic optical mapping study confirmed the correlation between shorter APD pre-occlusion and the incidence of VF during occlusion and indicated that the region of the LV exhibiting a shorter APD is confined to the apical half of the LV, and does not include basal LV or RV electrophysiology. Panoramic imaging also revealed a delayed activation time predominantly in the basal aspects of the LV. Both of these events – shorter APD in the apex and longer activation time in the base – were a feature of hearts that developed VF on ligation of the coronary artery. Future work will investigate the cellular/molecular basis for these differences in ventricular electrophysiology

    Electrophysiological Mechanisms of Gastrointestinal Arrhythmogenesis: Lessons from the Heart.

    Get PDF
    This is the final published version. It first appeared at http://journal.frontiersin.org/article/10.3389/fphys.2016.00230/full.Disruptions in the orderly activation and recovery of electrical excitation traveling through the heart and the gastrointestinal (GI) tract can lead to arrhythmogenesis. For example, cardiac arrhythmias predispose to thromboembolic events resulting in cerebrovascular accidents and myocardial infarction, and to sudden cardiac death. By contrast, arrhythmias in the GI tract are usually not life-threatening and much less well characterized. However, they have been implicated in the pathogenesis of a number of GI motility disorders, including gastroparesis, dyspepsia, irritable bowel syndrome, mesenteric ischaemia, Hirschsprung disease, slow transit constipation, all of which are associated with significant morbidity. Both cardiac and gastrointestinal arrhythmias can broadly be divided into non-reentrant and reentrant activity. The aim of this paper is to compare and contrast the mechanisms underlying arrhythmogenesis in both systems to provide insight into the pathogenesis of GI motility disorders and potential molecular targets for future therapy

    New Methodologies for the Development and Validation of Electrophysiological Models

    Get PDF
    De acuerdo a los datos de la Organización Mundial de la Salud, se estima que 17,7 millones de personas murieron de enfermedades cardiacas en 2015, lo que supone el 31% de las muertes, haciendo de estas patologías la primera causa de muerte en el mundo. El corazón es un sistema complejo que trabaja gracias a la interacción de un gran número de elementos en diferentes escalas espaciales y temporales. La función principal del corazón es bombear sangre en todo el cuerpo, siendo esta acción mecánica activada por la estimulación eléctrica. La aparición de problemas en el funcionamiento eléctrico o mecánico del corazón en cualquiera de las escalas involucradas, temporal o espacial, puede dar lugar a un mal funcionamiento cardiaco. El modelado matemático y la simulación de la actividad eléctrica del corazón (denominada electrofisiología cardiaca) y el procesado de señales bioeléctricas proporcionan un marco ideal para unir la información clínica y los estudios experimentales con la comprensión de los mecanismos que subyacen a estos problemas. Debido al gran número de factores que se deben tener en cuenta a la hora de desarrollar y validar un modelo computacional de electrofisiología cardiaca, asi como las complejas interacciones que existen entre ellos, hacen que nuevas metodologías que facilitan la concepción, la actualización y la validación de nuevos modelos sean de gran valor. Estas metodologías pueden enfocarse sea en la definición de las compuertas iónicas de los modelos, como en la propagación del impulso eléctrico en modelos multiescala. Esta tesis pretende mejorar el conocimiento existente sobre electrofisiología cardiaca proponiendo nuevas técnicas para desarrollar y validar modelos computacionales cardiacos, a través de la evaluación de los efectos de los eventos modelados mediante la consideración de las interacciones entre los diferentes componentes del modelo y la simulación de un rango de escalas espacio-temporales.En el capítulo 2, se introdujo un nuevo paradigma para desarrollar un nuevo modelo de potencial de acción de cardiomiocito humano, el modelo CRLP, partiendo de un modelo previamente publicado e incorporando nuevas mediciones experimentales de corrientes de potasio y reformulando la corriente de calcio tipo L. El paradigma introducido se basó en el análisis de la capacidad del modelo para replicar un conjunto de marcadores electrofisiológicos bien establecidos y en un análisis de sensibilidad de esos marcadores a las variaciones en los parámetros del modelo. Una de las ventajas del paradigma propuesto fue la posibilidad de identificar parámetros del modelo que no dependen directamente de las mediciones individuales de corrientes o concentraciones y que comúnmente se establecen ad hoc. El modelo CRLP se validó y se midió su rendimiento en la capacidad para predecir marcadores relacionados con la arritmia ventricular en comparación con el modelo cellular en el que se había basado.En el capítulo 3, se actualizó el modelo CRLP desarrollado en el capítulo 2 para introducir la formulación de la dinámica de potasio intracelular ([K+]i). Esta es una característica importante para la investigación de arritmias ventriculares que surgen en condiciones de hiperpotasemia, uno de los componentes de la isquemia de miocardio. La introducción directa de la dinámica de [K+]i en el modelo generó un desequilibrio en las corrientes de potasio que condugeron a una deriva en [K+]i. Para corregir tal desequilibrio, se propuso un algoritmo de optimización que permitía estimar las conductancias de las corrientes iónicas del modelo CRLP al tiempo que garantizaba valores fisiológicamente plausibles de una selección de propiedades electrofisiológicas, algunas de ellas muy relevantes en el estudio de arritmias ventriculares.Como se mencionó anteriormente, al proponer un nuevo modelo o al actualizar un modelo existente, la coherencia entre los datos simulados y experimentales debe verificarse considerando todos los efectos y escalas involucradas. Cuanto mejor se reproduzcan las condiciones experimentales en las simulaciones, más robusto será el proceso de desarrollo y validación del modelo. En el capítulo 4, se propuso la simulación de protocolos experimentales in silico para analizar cómo las interacciones entre los componentes del modelo afectan el desarrollo y la validación de los modelos matemáticos de canales iónicos; y cómo la propagación afecta los marcadores basados en el potencial de acción cuando son simulados en células aisladas o en preparaciones tisulares, identificando cómo contribuye cada corriente iónica en cada caso. y con los modelos de células ventriculares humanas más recientes publicados en laliteratura.El capítulo 7 resume las principales conclusiones de la tesis y presenta nuevas líneas de investigación que podrían emprenderse en futuros estudios. En conclusión, diferentes técnicas para mejorar el desarrollo y la validación de modelos electrofisiológicos cardíacos han sido propuestos y analizados en esta tesis. Basándose en el aumento de potencia computacional, se han considerado nuevas estrategias para reducir el número de hipótesis y/o supuestos al construir un modelo de potencial de acción de cardiomiocito ventricular. La aplicación de un algoritmo de optimización junto con la simulación in silico de los protocolos experimentales han ayudado a encontrar un modelo que represente mejor los resultados experimentales de los marcadores electrofisiológicos de riesgo arrítmico.El modelo CRLP, desarrollado en el capítulo 2 y actualizado en el capítulo 3, presentaba una forma más bien atípica al final de la fase de despolarización del potencial de acción (fase 1). La simulación in silico de los protocolos experimentales descritos en el capítulo 4 y la metodología de optimización presentada en el capítulo 3 se utilizaron para mejorar la forma del potencial de acción al tiempo que validaba el modelo ajustado a escalas iónicas, celulares y de tejido.En el capítulo 6 se integraron todas las formulaciones iniciales y actualizaciones subsiguientes del modelo CRLP propuestas en los capítulos anteriores y se reajustaron las conductancias iónicas del modelo para mejorar el comportamiento del modelo con respecto a medidas electrofisiológicas experimentales. Todas las metodologías introducidas a lo largo de la tesis se utilizaron para obtener un nuevo modelo de potencial de acción ventricular humano. Para la validación del modelo, se consideró un rango de datos experimentales disponibles a diferentes escalas y destinados a evaluar diferentes propiedades electrofisiológicas. Las condiciones subyacentes a cada uno de los estudios experimentales se replicaron tan fielmente como fue posible. Los resultados simulados con la versión final del modelo CRLP se compararon en todos los casos con todas las evidencias experimentales disponiblesAccording to data from the World Health Organization (WHO), 17.7 million people were estimated to have died of cardiovascular diseases (CVDs) in 2015. This represents 31 of all global deaths, making CVDs the leading cause of death worldwide. The heart is a complex system that works due to the interaction of a large number of elements at different temporal and spatial scales. The main function of the heart is to pump blood throughout the body, with this mechanical action being triggered by electrical impulses. Issues arising in the electrical or mechanical actions of the heart at any of the involved temporal and spatial scales can lead to cardiac malfunctioning. Mathematical modeling and simulation of the heart's electrical activity (so-called cardiac electrophysiology) combined with signal processing of bioelectrical signals provide an ideal framework to join the information from clinical and experimental studies with the understanding of the mechanisms underlying them. Due to the high number of factors involved in the development and validation of cardiac computational electrophysiological models and the intricate interrelationships between them, novel methodologies that help to control the design, update and validation of new models become of great advantage. These methodologies can target from the definition of ionic gating in the simulated cells to the propagation of the electrical impulse in multi-scale models. This thesis aims to improve the existing knowledge on heart's electrophysiology by proposing novel techniques to develop and validate cardiac computational models while accounting for the interactions between model components and including simulations of a range of spatio-temporal scales. In chapter 2, a new paradigm was introduced to develop a novel human ventricular cell model, the CRLP model, by departing from a previously published model, the Grandi-Pasqualini-Bers model (Grandi et al., 2009). Novel experimental measurements of potassium currents were incorporated and the L-type calcium current was reformulated. The introduced paradigm was based on the analysis of the model's ability to replicate a set of well-established electrophysiological markers and on a sensitivity analysis of those markers to variations in model parameters (Romero et al., 2008). A major advantage of the proposed paradigm was the possibility to identify model parameter values that do not directly depend on individual current measurements or concentrations, which are commonly set in an ad hoc manner. The developed CRLP model was validated and its improved capacity to investigate arrhythmia-related properties, as compared to the cell model it was based on, was corroborated. In chapter 3, the CRLP model developed in chapter 2 was updated to introduce the formulation of intracellular potassium ([K+]i) dynamics. This is an important characteristic for investigation of ventricular arrhythmias arising under conditions of hyperkalemia, one of the components of myocardial ischemia (Coronel et al. 1988). Direct introduction of [K+]i dynamics into the model generated an imbalance in the potassium currents leading to a drift in [K+]i. To correct for such an imbalance, an optimization framework was proposed that allowed estimating the ionic current conductances of the CRLP model while guaranteeing physiologically plausible values of selected electrophysiological properties, many of them highly relevant for investigation of ventricular arrhythmias. As mentioned above, when proposing a new model, or when updating an existing model, consistency between simulated and experimental data should be verified by considering all involved effects and scales. The closer the experimental conditions are reproduced in the computer simulations, the more robust the process of model development and validation can be. In chapter 4, in silico simulation of experimental protocols was proposed to analyze: how interactions between model components affect the development and validation of mathematical ion channel models; and how propagation affects action potential (AP)-based markers simulated in isolated cells and in tissue preparations, with identification of the ionic contributors in each case. The CRLP model, developed in chapter 2 and updated in chapter 3, presented a rather atypical shape at the end of the depolarization phase of the AP (phase 1). In chapter 5, the in silico simulations of experimental protocols described in chapter and the optimization methodology introduced in chapter 3 were used to improve the AP shape, while validating the adjusted model at ionic, cell and tissue scales. In chapter 6, all the initial formulations and subsequent updates of the CRLP model proposed in previous chapters were integrated and the ionic conductances of the integrated model were readjusted to improve replication of experimental electrophysiological measures. All the methodologies introduced throughout the thesis were thus used to build a novel human ventricular AP model. For model validation, a range of available experimental data at different scales targetting different electrophysiological properties was considered. Conditions underlying each of the experimental studies were replicated as faithfully as possible. Results simulated with the final version of the CRLP model were in all cases compared with all available experimental evidences and with the most recent human ventricular cell models published in the literature. Chapter 7, summarizes the main conclusions of the thesis and presents new lines of research that could be undertaken in future studies. <br /

    Techniques for ventricular repolarization instability assessment from the ECG

    Get PDF
    Instabilities in ventricular repolarization have been documented to be tightly linked to arrhythmia vulnera- bility. Translation of the information contained in the repolar- ization phase of the electrocardiogram (ECG) into valuable clinical decision-making tools remains challenging. This work aims at providing an overview of the last advances in the pro- posal and quantification of ECG-derived indices that describe repolarization properties and whose alterations are related with threatening arrhythmogenic conditions. A review of the state of the art is provided, spanning from the electrophysio- logical basis of ventricular repolarization to its characteriza- tion on the surface ECG through a set of temporal and spatial risk markers

    Simulating the Effect of Global Cardiac Ischaemia on the Dynamics of Ventricular Arrhythmias in the Human Heart

    Get PDF
    Cardiac arrhythmias are significant causes of death in the world, and ventricular fibrillation is a very dangerous type of cardiac arrhythmia. Global myocardial ischemia is a consequence of ventricular fibrillation (VF) and has been shown to change the dynamic behaviour of activation waves on the heart. The aim of this thesis is to use computational models to study the behaviour of re-entry in the human ventricles when the heart becomes globally ischaemic. The effects of two ischaemic components (hyperkalaemia and hypoxia) on spiral wave re-entry behaviour in two dimensional (2D) ventricular tissue using two ventricular action potential (AP) models were simulated (Ten Tusscher et al. 2006 (TP06) and O’Hara et al. 2011 (ORd)). A three dimensional (3D) model of the human ventricles is used to examine the influence of each ischaemic component on the stability of ventricular fibrillation. Firstly, the main ventricular AP models relevant to this thesis are reviewed. Then, the current-voltage properties of four different IK(ATP) formulations are examined to assess which formulation was more appropriate to simulate hypoxia/ischaemia. Secondly, how the formulation of IK(ATP) influences cell excitability and AP duration (APD) in models of human ventricular myocytes is studied. Finally, mechanisms underlying ventricular arrhythmia generation under the conditions of ischaemia are investigated

    Linee Guida ERC 2010

    Get PDF

    Smoking and Second Hand Smoking in Adolescents with Chronic Kidney Disease: A Report from the Chronic Kidney Disease in Children (CKiD) Cohort Study

    Get PDF
    The goal of this study was to determine the prevalence of smoking and second hand smoking [SHS] in adolescents with CKD and their relationship to baseline parameters at enrollment in the CKiD, observational cohort study of 600 children (aged 1-16 yrs) with Schwartz estimated GFR of 30-90 ml/min/1.73m2. 239 adolescents had self-report survey data on smoking and SHS exposure: 21 [9%] subjects had “ever” smoked a cigarette. Among them, 4 were current and 17 were former smokers. Hypertension was more prevalent in those that had “ever” smoked a cigarette (42%) compared to non-smokers (9%), p\u3c0.01. Among 218 non-smokers, 130 (59%) were male, 142 (65%) were Caucasian; 60 (28%) reported SHS exposure compared to 158 (72%) with no exposure. Non-smoker adolescents with SHS exposure were compared to those without SHS exposure. There was no racial, age, or gender differences between both groups. Baseline creatinine, diastolic hypertension, C reactive protein, lipid profile, GFR and hemoglobin were not statistically different. Significantly higher protein to creatinine ratio (0.90 vs. 0.53, p\u3c0.01) was observed in those exposed to SHS compared to those not exposed. Exposed adolescents were heavier than non-exposed adolescents (85th percentile vs. 55th percentile for BMI, p\u3c 0.01). Uncontrolled casual systolic hypertension was twice as prevalent among those exposed to SHS (16%) compared to those not exposed to SHS (7%), though the difference was not statistically significant (p= 0.07). Adjusted multivariate regression analysis [OR (95% CI)] showed that increased protein to creatinine ratio [1.34 (1.03, 1.75)] and higher BMI [1.14 (1.02, 1.29)] were independently associated with exposure to SHS among non-smoker adolescents. These results reveal that among adolescents with CKD, cigarette use is low and SHS is highly prevalent. The association of smoking with hypertension and SHS with increased proteinuria suggests a possible role of these factors in CKD progression and cardiovascular outcomes
    corecore