53 research outputs found

    A survey on data integration for multi-omics sample clustering

    Get PDF
    Due to the current high availability of omics, data-driven biology has greatly expanded, and several papers have reviewed state-of-the-art technologies. Nowadays, two main types of investigation are available for a multi-omics dataset: extraction of relevant features for a meaningful biological interpretation and clustering of the samples. In the latter case, a few reviews refer to some outdated or no longer available methods, whereas others lack the description of relevant clustering metrics to compare the main approaches. This work provides a general overview of the major techniques in this area, divided into four groups: graph, dimensionality reduction, statistical and neural-based. Besides, eight tools have been tested both on a synthetic and a real biological dataset. An extensive performance comparison has been provided using four clustering evaluation scores: Peak Signal-to-Noise Ratio (PSNR), Davies-Bouldin(DB) index, Silhouette value and the harmonic mean of cluster purity and efficiency. The best results were obtained by using the dimensionality reduction, either explicitly or implicitly, as in the neural architecture

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19

    Systems Analytics and Integration of Big Omics Data

    Get PDF
    A “genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This “Big Data” is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene–environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19

    Pathway-Based Multi-Omics Data Integration for Breast Cancer Diagnosis and Prognosis.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Large-Scale and Pan-Cancer Multi-omic Analyses with Machine Learning

    Get PDF
    Multi-omic data analysis has been foundational in many fields of molecular biology, including cancer research. Investigation of the relationship between different omic data types reveals patterns that cannot otherwise be found in a single data type alone. With recent technological advancements in mass spectrometry (MS), MS-based proteomics has enabled the quantification of thousands of proteins in hundreds of cell lines and human tissue samples. This thesis presents several machine learning-based methods that facilitate the integrative analysis of multi-omic data. First, we reviewed five existing multi-omic data integration methods and performed a benchmarking analysis, using a large-scale multi-omic cancer cell line dataset. We evaluated the performance of these machine learning methods for drug response prediction and cancer type classification. Our result provides recommendations to researchers regarding optimal machine learning method selection for their applications. Second, we generated a pan-cancer proteomic map of 949 cancer cell lines across 40 cancer types and developed a machine learning method DeeProM to analyse the multi-omic information of these lines. This pan-cancer proteomic map (ProCan-DepMapSanger) is now publicly available and represents a major resource for the scientific community, for biomarker discovery and for the study of fundamental aspects of protein regulation. Third, we focused on publicly available multi-omic datasets of both cancer cell lines and human tissue samples and developed a Transformer-based deep learning method, DeePathNet, which integrates human knowledge with machine intelligence. We applied DeePathNet on three evaluation tasks, namely drug response prediction, cancer type classification and breast cancer subtype classification. Taken together, our analyses and methods allowed more accurate cancer diagnosis and prognosis

    AI in Medical Imaging Informatics: Current Challenges and Future Directions

    Get PDF
    This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine
    corecore