10,709 research outputs found

    Quantized Compressed Sensing for Partial Random Circulant Matrices

    Full text link
    We provide the first analysis of a non-trivial quantization scheme for compressed sensing measurements arising from structured measurements. Specifically, our analysis studies compressed sensing matrices consisting of rows selected at random, without replacement, from a circulant matrix generated by a random subgaussian vector. We quantize the measurements using stable, possibly one-bit, Sigma-Delta schemes, and use a reconstruction method based on convex optimization. We show that the part of the reconstruction error due to quantization decays polynomially in the number of measurements. This is in line with analogous results on Sigma-Delta quantization associated with random Gaussian or subgaussian matrices, and significantly better than results associated with the widely assumed memoryless scalar quantization. Moreover, we prove that our approach is stable and robust; i.e., the reconstruction error degrades gracefully in the presence of non-quantization noise and when the underlying signal is not strictly sparse. The analysis relies on results concerning subgaussian chaos processes as well as a variation of McDiarmid's inequality.Comment: 15 page

    Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach

    Full text link
    This paper develops theoretical results regarding noisy 1-bit compressed sensing and sparse binomial regression. We show that a single convex program gives an accurate estimate of the signal, or coefficient vector, for both of these models. We demonstrate that an s-sparse signal in R^n can be accurately estimated from m = O(slog(n/s)) single-bit measurements using a simple convex program. This remains true even if each measurement bit is flipped with probability nearly 1/2. Worst-case (adversarial) noise can also be accounted for, and uniform results that hold for all sparse inputs are derived as well. In the terminology of sparse logistic regression, we show that O(slog(n/s)) Bernoulli trials are sufficient to estimate a coefficient vector in R^n which is approximately s-sparse. Moreover, the same convex program works for virtually all generalized linear models, in which the link function may be unknown. To our knowledge, these are the first results that tie together the theory of sparse logistic regression to 1-bit compressed sensing. Our results apply to general signal structures aside from sparsity; one only needs to know the size of the set K where signals reside. The size is given by the mean width of K, a computable quantity whose square serves as a robust extension of the dimension.Comment: 25 pages, 1 figure, error fixed in Lemma 4.

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    Consistent Basis Pursuit for Signal and Matrix Estimates in Quantized Compressed Sensing

    Get PDF
    This paper focuses on the estimation of low-complexity signals when they are observed through MM uniformly quantized compressive observations. Among such signals, we consider 1-D sparse vectors, low-rank matrices, or compressible signals that are well approximated by one of these two models. In this context, we prove the estimation efficiency of a variant of Basis Pursuit Denoise, called Consistent Basis Pursuit (CoBP), enforcing consistency between the observations and the re-observed estimate, while promoting its low-complexity nature. We show that the reconstruction error of CoBP decays like M1/4M^{-1/4} when all parameters but MM are fixed. Our proof is connected to recent bounds on the proximity of vectors or matrices when (i) those belong to a set of small intrinsic "dimension", as measured by the Gaussian mean width, and (ii) they share the same quantized (dithered) random projections. By solving CoBP with a proximal algorithm, we provide some extensive numerical observations that confirm the theoretical bound as MM is increased, displaying even faster error decay than predicted. The same phenomenon is observed in the special, yet important case of 1-bit CS.Comment: Keywords: Quantized compressed sensing, quantization, consistency, error decay, low-rank, sparsity. 10 pages, 3 figures. Note abbout this version: title change, typo corrections, clarification of the context, adding a comparison with BPD
    corecore