260 research outputs found

    Generalized Rao Test for Decentralized Detection of an Uncooperative Target

    Full text link
    We tackle distributed detection of a non-cooperative target with a Wireless Sensor Network (WSN). When the target is present, sensors observe an (unknown) deterministic signal with attenuation depending on the distance between the sensor and the (unknown) target positions, embedded in symmetricand unimodal noise. The Fusion Center (FC) receives quantized sensor observations through error-prone Binary Symmetric Channels (BSCs) and is in charge of performing a more-accurate global decision. The resulting problem is a two-sided parameter testing with nuisance parameters (i.e. the target position) present only under the alternative hypothesis. After introducing the Generalized Likelihood Ratio Test (GLRT) for the problem, we develop a novel fusion rule corresponding to a Generalized Rao (G-Rao) test, based on Davies' framework, to reduce the computational complexity. Also, a rationale for threshold-optimization is proposed and confirmed by simulations. Finally, the aforementioned rules are compared in terms of performance and computational complexity.Comment: extended version of IEEE Signal Processing Letter

    Asymptotically Optimal One-Bit Quantizer Design for Weak-signal Detection in Generalized Gaussian Noise and Lossy Binary Communication Channel

    Full text link
    In this paper, quantizer design for weak-signal detection under arbitrary binary channel in generalized Gaussian noise is studied. Since the performances of the generalized likelihood ratio test (GLRT) and Rao test are asymptotically characterized by the noncentral chi-squared probability density function (PDF), the threshold design problem can be formulated as a noncentrality parameter maximization problem. The theoretical property of the noncentrality parameter with respect to the threshold is investigated, and the optimal threshold is shown to be found in polynomial time with appropriate numerical algorithm and proper initializations. In certain cases, the optimal threshold is proved to be zero. Finally, numerical experiments are conducted to substantiate the theoretical analysis

    Application of Compressive Sensing Techniques in Distributed Sensor Networks: A Survey

    Full text link
    In this survey paper, our goal is to discuss recent advances of compressive sensing (CS) based solutions in wireless sensor networks (WSNs) including the main ongoing/recent research efforts, challenges and research trends in this area. In WSNs, CS based techniques are well motivated by not only the sparsity prior observed in different forms but also by the requirement of efficient in-network processing in terms of transmit power and communication bandwidth even with nonsparse signals. In order to apply CS in a variety of WSN applications efficiently, there are several factors to be considered beyond the standard CS framework. We start the discussion with a brief introduction to the theory of CS and then describe the motivational factors behind the potential use of CS in WSN applications. Then, we identify three main areas along which the standard CS framework is extended so that CS can be efficiently applied to solve a variety of problems specific to WSNs. In particular, we emphasize on the significance of extending the CS framework to (i). take communication constraints into account while designing projection matrices and reconstruction algorithms for signal reconstruction in centralized as well in decentralized settings, (ii) solve a variety of inference problems such as detection, classification and parameter estimation, with compressed data without signal reconstruction and (iii) take practical communication aspects such as measurement quantization, physical layer secrecy constraints, and imperfect channel conditions into account. Finally, open research issues and challenges are discussed in order to provide perspectives for future research directions

    Distributed Bayesian Detection Under Unknown Observation Statistics

    Full text link
    In this paper, distributed Bayesian detection problems with unknown prior probabilities of hypotheses are considered. The sensors obtain observations which are conditionally dependent across sensors and their probability density functions (pdf) are not exactly known. The observations are quantized and are sent to the fusion center. The fusion center fuses the current quantized observations and makes a final decision. It also designs (updated) quantizers to be used at the sensors and the fusion rule based on all previous quantized observations. Information regarding updated quantizers is sent back to the sensors for use at the next time. In this paper, the conditional joint pdf is represented in a parametric form by using the copula framework. The unknown parameters include dependence parameters and marginal parameters. Maximum likelihood estimation (MLE) with feedback based on quantized data is proposed to estimate the unknown parameters. These estimates are iteratively used to refine the quantizers and the fusion rule to improve distributed detection performance by using feedback. Numerical examples show that the new detection method based on MLE with feedback is much better than the usual detection method based on the assumption of conditionally independent observations.Comment: 17 pages, 6 figures, submitted to journa

    Distributed Detection in Wireless Sensor Networks under Multiplicative Fading via Generalized Score-tests

    Get PDF
    In this paper, we address the problem of distributed detection of a non-cooperative (unknown emitted signal) target with a Wireless Sensor Network (WSN). When the target is present, sensors observe an (unknown) deterministic signal with attenuation depending on the unknown distance between the sensor and the target, multiplicative fading, and additive Gaussian noise. To model energy-constrained operations within Internet of Things (IoT), one-bit sensor measurement quantization is employed and two strategies for quantization are investigated. The Fusion Center (FC) receives sensor bits via noisy Binary Symmetric Channels (BSCs) and provides a more accurate global inference. Such a model leads to a test with nuisances (i.e. the target position xT) observable only under H1 hypothesis. Davies framework is exploited herein to design the generalized forms of Rao and Locally-Optimum Detection (LOD) tests. For our generalized Rao and LOD approaches, a heuristic approach for threshold-optimization is also proposed. Simulation results confirm the promising performance of our proposed approaches.acceptedVersio

    Decision Fusion for Large-Scale Sensor Networks with Nonideal Channels

    Get PDF
    Since there has been an increasing interest in the areas of Internet of Things (IoT) and artificial intelligence that often deals with a large number of sensors, this chapter investigates the decision fusion problem for large-scale sensor networks. Due to unavoidable transmission channel interference, we consider sensor networks with nonideal channels that are prone to errors. When the fusion rule is fixed, we present the necessary condition for the optimal sensor rules that minimize the Monte Carlo cost function. For the K-out-of-L fusion rule chosen very often in practice, we analytically derive the optimal sensor rules. For general fusion rules, a Monte Carlo Gauss-Seidel optimization algorithm is developed to search for the optimal sensor rules. The complexity of the new algorithm is of the order of OLN compared with OLNL of the previous algorithm that was based on Riemann sum approximation, where L is the number of sensors and N is the number of samples. Thus, the proposed method allows us to design the decision fusion rule for large-scale sensor networks. Moreover, the algorithm is generalized to simultaneously search for the optimal sensor rules and the optimal fusion rule. Finally, numerical examples show the effectiveness of the new algorithms for large-scale sensor networks with nonideal channels

    Fusing Dependent Decisions for Hypothesis Testing with Heterogeneous Sensors

    Get PDF
    In this paper, we consider a binary decentralized detection problem where the local sensor observations are quantized before their transmission to the fusion center. Sensor observations, and hence their quantized versions, may be heterogeneous as well as statistically dependent. A composite binary hypothesis testing problem is formulated, and a copula-based generalized likelihood ratio test (GLRT) based fusion rule is derived given that the local sensors are uniform multi-level quantizers. An alternative computationally efficient fusion rule is also designed which involves injecting a deliberate random disturbance to the local sensor decisions before fusion. Although the introduction of external noise causes a reduction in the received signal to noise ratio, it is shown that the proposed approach can result in a detection performance comparable to the GLRT detector without external noise, especially when the number of quantization levels is larg

    Distributed implementations of the particle filter with performance bounds

    Get PDF
    The focus of the thesis is on developing distributed estimation algorithms for systems with nonlinear dynamics. Of particular interest are the agent or sensor networks (AN/SN) consisting of a large number of local processing and observation agents/nodes, which can communicate and cooperate with each other to perform a predefined task. Examples of such AN/SNs are distributed camera networks, acoustic sensor networks, networks of unmanned aerial vehicles, social networks, and robotic networks. Signal processing in the AN/SNs is traditionally centralized and developed for systems with linear dynamics. In the centralized architecture, the participating nodes communicate their observations (either directly or indirectly via a multi-hop relay) to a central processing unit, referred to as the fusion centre, which is responsible for performing the predefined task. For centralized systems with linear dynamics, the Kalman filter provides the optimal approach but suffers from several drawbacks, e.g., it is generally unscalable and also susceptible to failure in case the fusion centre breaks down. In general, no analytic solution can be determined for systems with nonlinear dynamics. Consequently, the conventional Kalman filter cannot be used and one has to rely on numerical approaches. In such cases, the sequential Monte Carlo approaches, also known as the particle filters, are widely used as approximates to the Bayesian estimators but mostly in the centralized configuration. Recently there has been a growing interest in distributed signal processing algorithms where: (i) There is no fusion centre; (ii) The local nodes do not have (require) global knowledge of the network topology, and; (iii) Each node exchanges data only within its local neighborhood. Distributed estimation have been widely explored for estimation/tracking problems in linear systems. Distributed particle filter implementations for nonlinear systems are still in their infancy and are the focus of this thesis. In the first part of this thesis, four different consensus-based distributed particle filter implementations are proposed. First, a constrained sufficient statistic based distributed implementation of the particle filter (CSS/DPF) is proposed for bearing-only tracking (BOT) and joint bearing/range tracking problems encountered in a number of applications including radar target tracking and robot localization. Although the number of parallel consensus runs in the CSS/DPF is lower compared to the existing distributed implementations of the particle filter, the CSS/DPF still requires a large number of iterations for the consensus runs to converge. To further reduce the consensus overhead, the CSS/DPF is extended to distributed implementation of the unscented particle filter, referred to as the CSS/DUPF, which require a limited number of consensus iterations. Both CSS/DPF and CSS/DUPF are specific to BOT and joint bearing/range tracking problems. Next, the unscented, consensus-based, distributed implementation of the particle filter (UCD /DPF) is proposed which is generalizable to systems with any dynamics. In terms of contributions, the UCD /DPF makes two important improvements to the existing distributed particle filter framework: (i) Unlike existing distributed implementations of the particle filter, the UCD /DPF uses all available global observations including the most recent ones in deriving the proposal distribution based on the distributed UKF, and; (ii) Computation of the global estimates from local estimates during the consensus step is based on an optimal fusion rule. Finally, a multi-rate consensus/fusion based framework for distributed implementation of the particle filter, referred to as the CF /DPF, is proposed. Separate fusion filters are designed to consistently assimilate the local filtering distributions into the global posterior by compensating for the common past information between neighbouring nodes. The CF /DPF offers two distinct advantages over its counterparts. First, the CF /DPF framework is suitable for scenarios where network connectivity is intermittent and consensus can not be reached between two consecutive observations. Second, the CF /DPF is not limited to the Gaussian approximation for the global posterior density. Numerical simulations verify the near-optimal performance of the proposed distributed particle filter implementations. The second half of the thesis focuses on the distributed computation of the posterior Cramer-Rao lower bounds (PCRLB). The current PCRLB approaches assume a centralized or hierarchical architecture. The exact expression for distributed computation of the PCRLB is not yet available and only an approximate expression has recently been derived. Motivated by the distributed adaptive resource management problems with the objective of dynamically activating a time-variant subset of observation nodes to optimize the network's performance, the thesis derives the exact expression, referred to as the dPCRLB, for computing the PCRLB for any AN/SN configured in a distributed fashion. The dPCRLB computational algorithms are derived for both the off-line conventional (non-conditional) PCRLB determined primarily from the state model, observation model, and prior knowledge of the initial state of the system, and the online conditional PCRLB expressed as a function of past history of the observations. Compared to the non-conditional dPCRLB, its conditional counterpart provides a more accurate representation of the estimator's performance and, consequently, a better criteria for sensor selection. The thesis then extends the dPCRLB algorithms to quantized observations. Particle filter realizations are used to compute these bounds numerically and quantify their performance for data fusion problems through Monte-Carlo simulations

    Voting as validation in robot programming

    Get PDF
    This paper investigates the use of voting as a conflict-resolution technique for data analysis in robot programming. Voting represents an information-abstraction technique. It is argued that in some cases a voting approach is inherent in the nature of the data being analyzed: where multiple, independent sources of information must be reconciled to give a group decision that reflects a single outcome rather than a consensus average. This study considers an example of target classification using sonar sensors. Physical models of reflections from target primitives that are typical of the indoor environment of a mobile robot are used. Dispersed sensors take decisions on target type, which must then be fused to give the single group classification of the presence or absence and type of a target. Dempster-Shafer evidential reasoning is used to assign a level of belief to each sensor decision. The decisions are then fused by two means. Using Dempster's rule of combination, conflicts are resolved through a group measure expressing dissonance in the sensor views. This evidential approach is contrasted with the resolution of sensor conflict through voting. It is demonstrated that abstraction of the level of belief through voting proves useful in resolving the straightforward conflicts that arise in the classification problem. Conflicts arise where the discriminant data value, an echo amplitude, is most sensitive to noise. Fusion helps to overcome this vulnerability: in Dempster-Shafer reasoning, through the modeling of nonparametric uncertainty and combination of belief values; and in voting, by emphasizing the majority view. The paper gives theoretical and experimental evidence for the use of voting for data abstraction and conflict resolution in areas such as classification, where a strong argument can be made for techniques that emphasize a single outcome rather than an estimated value. Methods for making the vote more strategic are also investigated. The paper addresses the reduction of dimension of sets of decision points or decision makers. Through a consideration of combination/order, queuing criteria for more strategic fusion are identified

    MAC-PHY Frameworks For LTE And WiFi Networks\u27 Coexistence Over The Unlicensed Band

    Get PDF
    The main focus of this dissertation is to address these issues and to analyze the interactions between LTE and WiFi coexisting on the unlicensed spectrum. This can be done by providing some improvements in the first two communication layers in both technologies. Regarding the physical (PHY) layer, efficient spectrum sensing and data fusion techniques that consider correlated spectrum sensing readings at the LTE/WiFi users (sensors) are needed. Failure to consider such correlation has been a major shortcoming of the literature. This resulted in poorly performing spectrum sensing systems if such correlation is not considered in correlated-measurements environments
    • …
    corecore