12,598 research outputs found

    The Partial Evaluation Approach to Information Personalization

    Get PDF
    Information personalization refers to the automatic adjustment of information content, structure, and presentation tailored to an individual user. By reducing information overload and customizing information access, personalization systems have emerged as an important segment of the Internet economy. This paper presents a systematic modeling methodology - PIPE (`Personalization is Partial Evaluation') - for personalization. Personalization systems are designed and implemented in PIPE by modeling an information-seeking interaction in a programmatic representation. The representation supports the description of information-seeking activities as partial information and their subsequent realization by partial evaluation, a technique for specializing programs. We describe the modeling methodology at a conceptual level and outline representational choices. We present two application case studies that use PIPE for personalizing web sites and describe how PIPE suggests a novel evaluation criterion for information system designs. Finally, we mention several fundamental implications of adopting the PIPE model for personalization and when it is (and is not) applicable.Comment: Comprehensive overview of the PIPE model for personalizatio

    On the Localization of the Personalized PageRank of Complex Networks

    Get PDF
    In this paper new results on personalized PageRank are shown. We consider directed graphs that may contain dangling nodes. The main result presented gives an analytical characterization of all the possible values of the personalized PageRank for any node.We use this result to give a theoretical justification of a recent model that uses the personalized PageRank to classify users of Social Networks Sites. We introduce new concepts concerning competitivity and leadership in complex networks. We also present some theoretical techniques to locate leaders and competitors which are valid for any personalization vector and by using only information related to the adjacency matrix of the graph and the distribution of its dangling nodes

    Personalization by Partial Evaluation.

    Get PDF
    The central contribution of this paper is to model personalization by the programmatic notion of partial evaluation.Partial evaluation is a technique used to automatically specialize programs, given incomplete information about their input.The methodology presented here models a collection of information resources as a program (which abstracts the underlying schema of organization and flow of information),partially evaluates the program with respect to user input,and recreates a personalized site from the specialized program.This enables a customizable methodology called PIPE that supports the automatic specialization of resources,without enumerating the interaction sequences beforehand .Issues relating to the scalability of PIPE,information integration,sessioniz-ling scenarios,and case studies are presented

    Web Site Personalization based on Link Analysis and Navigational Patterns

    Get PDF
    The continuous growth in the size and use of the World Wide Web imposes new methods of design and development of on-line information services. The need for predicting the users’ needs in order to improve the usability and user retention of a web site is more than evident and can be addressed by personalizing it. Recommendation algorithms aim at proposing “next” pages to users based on their current visit and the past users’ navigational patterns. In the vast majority of related algorithms, however, only the usage data are used to produce recommendations, disregarding the structural properties of the web graph. Thus important – in terms of PageRank authority score – pages may be underrated. In this work we present UPR, a PageRank-style algorithm which combines usage data and link analysis techniques for assigning probabilities to the web pages based on their importance in the web site’s navigational graph. We propose the application of a localized version of UPR (l-UPR) to personalized navigational sub-graphs for online web page ranking and recommendation. Moreover, we propose a hybrid probabilistic predictive model based on Markov models and link analysis for assigning prior probabilities in a hybrid probabilistic model. We prove, through experimentation, that this approach results in more objective and representative predictions than the ones produced from the pure usage-based approaches

    A graph-based approach for learner-tailored teaching of Korean grammar constructions

    Get PDF

    PageRank Optimization by Edge Selection

    Get PDF
    The importance of a node in a directed graph can be measured by its PageRank. The PageRank of a node is used in a number of application contexts - including ranking websites - and can be interpreted as the average portion of time spent at the node by an infinite random walk. We consider the problem of maximizing the PageRank of a node by selecting some of the edges from a set of edges that are under our control. By applying results from Markov decision theory, we show that an optimal solution to this problem can be found in polynomial time. Our core solution results in a linear programming formulation, but we also provide an alternative greedy algorithm, a variant of policy iteration, which runs in polynomial time, as well. Finally, we show that, under the slight modification for which we are given mutually exclusive pairs of edges, the problem of PageRank optimization becomes NP-hard.Comment: 30 pages, 3 figure
    • …
    corecore