69,334 research outputs found

    Auctioning Bulk Mobile Messages

    Get PDF
    The search for enablers of continued growth of SMS traffic, as well asthe take-off of the more diversified MMS message contents, open up forenterprises the potential of bulk use of mobile messaging , instead ofessentially one-by-one use. In parallel, such enterprises or valueadded services needing mobile messaging in bulk - for spot use or foruse over a prescribed period of time - want to minimize totalacquisition costs, from a set of technically approved providers ofmessaging capacity.This leads naturally to the evaluation of auctioning for bulk SMS orMMS messaging capacity, with the intrinsic advantages therein such asreduction in acquisition costs, allocation efficiency, and optimality.The paper shows, with extensive results as evidence from simulationscarried out in the Rotterdam School of Management e-Auction room, howmulti-attribute reverse auctions perform for the enterprise-buyer, aswell as for the messaging capacity-sellers. We compare 1- and 5-roundauctions, to show the learning effect and the benefits thereof to thevarious parties. The sensitivity will be reported to changes in theenterprise's and the capacity providers utilities and prioritiesbetween message attributes (such as price, size, security, anddelivery delay). At the organizational level, the paper also considersalternate organizational deployment schemes and properties for anoff-line or spot bulk messaging capacity market, subject to technicaland regulatory constraints.MMS;EMS;Mobile commerce;SMS;multi-attribute auctions

    Enabling Confidentiality in Content-Based Publish/Subscribe Infrastructures

    Get PDF
    Content-Based Publish/Subscribe (CBPS) is an interaction model where the interests of subscribers are stored in a content-based forwarding infrastructure to guide routing of notifications to interested parties. In this paper, we focus on answering the following question: Can we implement content-based publish/subscribe while keeping subscriptions and notifications confidential from the forwarding brokers? Our contributions include a systematic analysis of the problem, providing a formal security model and showing that the maximum level of attainable security in this setting is restricted. We focus on enabling provable confidentiality for commonly used applications and subscription languages in CBPS and present a series of practical provably secure protocols, some of which are novel and others adapted from existing work. We have implemented these protocols in SIENA, a popular CBPS system. Evaluation results show that confidential content-based publish/subscribe is practical: A single broker serving 1000 subscribers is able to route more than 100 notifications per second with our solutions

    An Evolutionary Learning Approach for Adaptive Negotiation Agents

    Get PDF
    Developing effective and efficient negotiation mechanisms for real-world applications such as e-Business is challenging since negotiations in such a context are characterised by combinatorially complex negotiation spaces, tough deadlines, very limited information about the opponents, and volatile negotiator preferences. Accordingly, practical negotiation systems should be empowered by effective learning mechanisms to acquire dynamic domain knowledge from the possibly changing negotiation contexts. This paper illustrates our adaptive negotiation agents which are underpinned by robust evolutionary learning mechanisms to deal with complex and dynamic negotiation contexts. Our experimental results show that GA-based adaptive negotiation agents outperform a theoretically optimal negotiation mechanism which guarantees Pareto optimal. Our research work opens the door to the development of practical negotiation systems for real-world applications

    Design and Experimental Validation of a Software-Defined Radio Access Network Testbed with Slicing Support

    Get PDF
    Network slicing is a fundamental feature of 5G systems to partition a single network into a number of segregated logical networks, each optimized for a particular type of service, or dedicated to a particular customer or application. The realization of network slicing is particularly challenging in the Radio Access Network (RAN) part, where multiple slices can be multiplexed over the same radio channel and Radio Resource Management (RRM) functions shall be used to split the cell radio resources and achieve the expected behaviour per slice. In this context, this paper describes the key design and implementation aspects of a Software-Defined RAN (SD-RAN) experimental testbed with slicing support. The testbed has been designed consistently with the slicing capabilities and related management framework established by 3GPP in Release 15. The testbed is used to demonstrate the provisioning of RAN slices (e.g. preparation, commissioning and activation phases) and the operation of the implemented RRM functionality for slice-aware admission control and scheduling

    Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data

    Full text link
    The k-means clustering is one of the most popular clustering algorithms in data mining. Recently a lot of research has been concentrated on the algorithm when the dataset is divided into multiple parties or when the dataset is too large to be handled by the data owner. In the latter case, usually some servers are hired to perform the task of clustering. The dataset is divided by the data owner among the servers who together perform the k-means and return the cluster labels to the owner. The major challenge in this method is to prevent the servers from gaining substantial information about the actual data of the owner. Several algorithms have been designed in the past that provide cryptographic solutions to perform privacy preserving k-means. We provide a new method to perform k-means over a large set using multiple servers. Our technique avoids heavy cryptographic computations and instead we use a simple randomization technique to preserve the privacy of the data. The k-means computed has exactly the same efficiency and accuracy as the k-means computed over the original dataset without any randomization. We argue that our algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems Security. Springer, Cham, 201
    corecore