7,297 research outputs found

    PRESS: A Novel Framework of Trajectory Compression in Road Networks

    Get PDF
    Location data becomes more and more important. In this paper, we focus on the trajectory data, and propose a new framework, namely PRESS (Paralleled Road-Network-Based Trajectory Compression), to effectively compress trajectory data under road network constraints. Different from existing work, PRESS proposes a novel representation for trajectories to separate the spatial representation of a trajectory from the temporal representation, and proposes a Hybrid Spatial Compression (HSC) algorithm and error Bounded Temporal Compression (BTC) algorithm to compress the spatial and temporal information of trajectories respectively. PRESS also supports common spatial-temporal queries without fully decompressing the data. Through an extensive experimental study on real trajectory dataset, PRESS significantly outperforms existing approaches in terms of saving storage cost of trajectory data with bounded errors.Comment: 27 pages, 17 figure

    Algorithms for the Analysis of Spatio-Temporal Data from Team Sports

    Get PDF
    Modern object tracking systems are able to simultaneously record trajectories—sequences of time-stamped location points—for large numbers of objects with high frequency and accuracy. The availability of trajectory datasets has resulted in a consequent demand for algorithms and tools to extract information from these data. In this thesis, we present several contributions intended to do this, and in particular, to extract information from trajectories tracking football (soccer) players during matches. Football player trajectories have particular properties that both facilitate and present challenges for the algorithmic approaches to information extraction. The key property that we look to exploit is that the movement of the players reveals information about their objectives through cooperative and adversarial coordinated behaviour, and this, in turn, reveals the tactics and strategies employed to achieve the objectives. While the approaches presented here naturally deal with the application-specific properties of football player trajectories, they also apply to other domains where objects are tracked, for example behavioural ecology, traffic and urban planning

    A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm

    Get PDF
    The main goal is to develop a general theory for the control of flexible robots, including flexible joint robots, flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation, the theory is applied to the control law development for a test example which consists of a three-link arm modeled after the shoulder yaw joint of the space shuttle remote manipulator system (RMS). The performance of the closed loop control system is then compared with the performance of the existing RMS controller to demonstrate the effectiveness of the proposed approach. The theoretical foundation of this new approach to the control of flexible robots is presented and its efficacy is demonstrated through simulation results on the three-link test arm

    A high accuracy Leray-deconvolution model of turbulence and its limiting behavior

    Full text link
    In 1934 J. Leray proposed a regularization of the Navier-Stokes equations whose limits were weak solutions of the NSE. Recently, a modification of the Leray model, called the Leray-alpha model, has atracted study for turbulent flow simulation. One common drawback of Leray type regularizations is their low accuracy. Increasing the accuracy of a simulation based on a Leray regularization requires cutting the averaging radius, i.e., remeshing and resolving on finer meshes. This report analyzes a family of Leray type models of arbitrarily high orders of accuracy for fixed averaging radius. We establish the basic theory of the entire family including limiting behavior as the averaging radius decreases to zero, (a simple extension of results known for the Leray model). We also give a more technically interesting result on the limit as the order of the models increases with fixed averaging radius. Because of this property, increasing accuracy of the model is potentially cheaper than decreasing the averaging radius (or meshwidth) and high order models are doubly interesting

    WKB Approximation to the Power Wall

    Full text link
    We present a semiclassical analysis of the quantum propagator of a particle confined on one side by a steeply, monotonically rising potential. The models studied in detail have potentials proportional to xαx^{\alpha} for x>0x>0; the limit α→∞\alpha\to\infty would reproduce a perfectly reflecting boundary, but at present we concentrate on the cases α=1\alpha =1 and 2, for which exact solutions in terms of well known functions are available for comparison. We classify the classical paths in this system by their qualitative nature and calculate the contributions of the various classes to the leading-order semiclassical approximation: For each classical path we find the action SS, the amplitude function AA and the Laplacian of AA. (The Laplacian is of interest because it gives an estimate of the error in the approximation and is needed for computing higher-order approximations.) The resulting semiclassical propagator can be used to rewrite the exact problem as a Volterra integral equation, whose formal solution by iteration (Neumann series) is a semiclassical, not perturbative, expansion. We thereby test, in the context of a concrete problem, the validity of the two technical hypotheses in a previous proof of the convergence of such a Neumann series in the more abstract setting of an arbitrary smooth potential. Not surprisingly, we find that the hypotheses are violated when caustics develop in the classical dynamics; this opens up the interesting future project of extending the methods to momentum space.Comment: 30 pages, 8 figures. Minor corrections in v.
    • …
    corecore