190,369 research outputs found

    Network Information Flow in Small World Networks

    Get PDF
    Recent results from statistical physics show that large classes of complex networks, both man-made and of natural origin, are characterized by high clustering properties yet strikingly short path lengths between pairs of nodes. This class of networks are said to have a small-world topology. In the context of communication networks, navigable small-world topologies, i.e. those which admit efficient distributed routing algorithms, are deemed particularly effective, for example in resource discovery tasks and peer-to-peer applications. Breaking with the traditional approach to small-world topologies that privileges graph parameters pertaining to connectivity, and intrigued by the fundamental limits of communication in networks that exploit this type of topology, we investigate the capacity of these networks from the perspective of network information flow. Our contribution includes upper and lower bounds for the capacity of standard and navigable small-world models, and the somewhat surprising result that, with high probability, random rewiring does not alter the capacity of a small-world network.Comment: 23 pages, 8 fitures, submitted to the IEEE Transactions on Information Theory, November 200

    Collective versus hub activation of epidemic phases on networks

    Full text link
    We consider a general criterion to discern the nature of the threshold in epidemic models on scale-free (SF) networks. Comparing the epidemic lifespan of the nodes with largest degrees with the infection time between them, we propose a general dual scenario, in which the epidemic transition is either ruled by a hub activation process, leading to a null threshold in the thermodynamic limit, or given by a collective activation process, corresponding to a standard phase transition with a finite threshold. We validate the proposed criterion applying it to different epidemic models, with waning immunity or heterogeneous infection rates in both synthetic and real SF networks. In particular, a waning immunity, irrespective of its strength, leads to collective activation with finite threshold in scale-free networks with large exponent, at odds with canonical theoretical approaches.Comment: Revised version accepted for publication in PR

    Subgraphs in preferential attachment models

    Get PDF
    We consider subgraph counts in general preferential attachment models with power-law degree exponent τ>2\tau>2. For all subgraphs HH, we find the scaling of the expected number of subgraphs as a power of the number of vertices. We prove our results on the expected number of subgraphs by defining an optimization problem that finds the optimal subgraph structure in terms of the indices of the vertices that together span it and by using the representation of the preferential attachment model as a P\'olya urn model

    On the Analysis of a Label Propagation Algorithm for Community Detection

    Full text link
    This paper initiates formal analysis of a simple, distributed algorithm for community detection on networks. We analyze an algorithm that we call \textsc{Max-LPA}, both in terms of its convergence time and in terms of the "quality" of the communities detected. \textsc{Max-LPA} is an instance of a class of community detection algorithms called \textit{label propagation} algorithms. As far as we know, most analysis of label propagation algorithms thus far has been empirical in nature and in this paper we seek a theoretical understanding of label propagation algorithms. In our main result, we define a clustered version of \er random graphs with clusters V1,V2,...,VkV_1, V_2,..., V_k where the probability pp, of an edge connecting nodes within a cluster ViV_i is higher than pp', the probability of an edge connecting nodes in distinct clusters. We show that even with fairly general restrictions on pp and pp' (p=Ω(1n1/4ϵ)p = \Omega(\frac{1}{n^{1/4-\epsilon}}) for any ϵ>0\epsilon > 0, p=O(p2)p' = O(p^2), where nn is the number of nodes), \textsc{Max-LPA} detects the clusters V1,V2,...,VnV_1, V_2,..., V_n in just two rounds. Based on this and on empirical results, we conjecture that \textsc{Max-LPA} can correctly and quickly identify communities on clustered \er graphs even when the clusters are much sparser, i.e., with p=clognnp = \frac{c\log n}{n} for some c>1c > 1.Comment: 17 pages. Submitted to ICDCN 201

    Variational principle for scale-free network motifs

    Get PDF
    For scale-free networks with degrees following a power law with an exponent τ(2,3)\tau\in(2,3), the structures of motifs (small subgraphs) are not yet well understood. We introduce a method designed to identify the dominant structure of any given motif as the solution of an optimization problem. The unique optimizer describes the degrees of the vertices that together span the most likely motif, resulting in explicit asymptotic formulas for the motif count and its fluctuations. We then classify all motifs into two categories: motifs with small and large fluctuations
    corecore