4,253 research outputs found

    Caching Gain in Wireless Networks with Fading: A Multi-User Diversity Perspective

    Full text link
    We consider the effect of caching in wireless networks where fading is the dominant channel effect. First, we propose a one-hop transmission strategy for cache-enabled wireless networks, which is based on exploiting multi-user diversity gain. Then, we derive a closed-form result for throughput scaling of the proposed scheme in large networks, which reveals the inherent trade-off between cache memory size and network throughput. Our results show that substantial throughput improvements are achievable in networks with sources equipped with large cache size. We also verify our analytical result through simulations.Comment: 6 pages, 4 figures, conferenc

    Applications of Geometric Algorithms to Reduce Interference in Wireless Mesh Network

    Full text link
    In wireless mesh networks such as WLAN (IEEE 802.11s) or WMAN (IEEE 802.11), each node should help to relay packets of neighboring nodes toward gateway using multi-hop routing mechanisms. Wireless mesh networks usually intensively deploy mesh nodes to deal with the problem of dead spot communication. However, the higher density of nodes deployed, the higher radio interference occurred. This causes significant degradation of system performance. In this paper, we first convert network problems into geometry problems in graph theory, and then solve the interference problem by geometric algorithms. We first define line intersection in a graph to reflect radio interference problem in a wireless mesh network. We then use plan sweep algorithm to find intersection lines, if any; employ Voronoi diagram algorithm to delimit the regions among nodes; use Delaunay Triangulation algorithm to reconstruct the graph in order to minimize the interference among nodes. Finally, we use standard deviation to prune off those longer links (higher interference links) to have a further enhancement. The proposed hybrid solution is proved to be able to significantly reduce interference in a wireless mesh network in O(n log n) time complexity.Comment: 24 Pages, JGraph-Hoc Journal 201

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Achievable Throughput in Two-Scale Wireless Networks

    Get PDF
    We propose a new model of wireless networks which we refer to as "two-scale networks." At a local scale, characterised by nodes being within a distance r, channel strengths are drawn independently and identically from a distance-independent distribution. At a global scale, characterised by nodes being further apart from each other than a distance r, channel connections are governed by a Rayleigh distribution, with the power satisfying a distance-based decay law. Thus, at a local scale, channel strengths are determined primarily by random effects such as obstacles and scatterers whereas at the global scale channel strengths depend on distance. For such networks, we propose a hybrid communications scheme, combining elements of distance-dependent networks and random networks. For particular classes of two-scale networks with N nodes, we show that an aggregate throughput that is slightly sublinear in N, for instance, of the form N/ log^4 N is achievable. This offers a significant improvement over a throughput scaling behaviour of O(√N) that is obtained in other work
    corecore