14,454 research outputs found

    Nonlinear waves in a chain of magnetically coupled pendula

    Get PDF
    A motivation for the study of reduced models like one-dimensional systems in Solid State Physics is the complexity of the full problem. In recent years our group has studied theoretically, numerically and experimentally wave propagation in lattices of nonlinearly coupled oscillators. Here, we present the dynamics of magnetically coupled pendula lattices. These macroscopic systems can model the dynamical processes of matter or layered systems. We report the results obtained for harmonic wave propagation in these media, and the different regimes of mode conversion into higher harmonics strongly influenced by dispersion and discreteness, including the phenomenon of acoustic dilatation of the chain, as well as some results on the propagation of localized waves i.e., solitons and kinks.Generalitat Valenciana APOSTD/2017/042Umiversitat Politècnica de València PAID-01-14Ministerio de Economía y Competitividad (MINECO), Spain FIS2015-65998-C2-2-PJunta de Andalucía 2017/FQM-28

    New Analytical Approach for Computation of Band Structure in One-dimensional Periodic Media

    Full text link
    In this paper, we present a new approach for the exact calculation of band structure in one-dimensional periodic media, such as photonic crystals and superlattices, based on the recently reported differential transfer matrix method (DTMM). The media analyzed in this paper can have arbitrary profile of refractive index. We derive a closed form dispersion equation using differential transfer matrix formalism, and simplify it under the assumptions of even symmetry and real-valued wavenumber. We also show that under normal incidence both TE and TM modes must have the same band structure. Several numerical test cases are also studied and discussed

    Local Normal Mode Coupling and Energy Band Splitting in Elliptically Birefringent 1D Magnetophotonic Crystals

    Full text link
    An analysis is presented of wave-vector dispersion in elliptically birefringent stratified magneto-optic media having one-dimensional periodicity. It is found that local normal-mode polarization-state differences between adjacent layers lead to mode coupling and impact the wave-vector dispersion and the character of the Bloch states of the system. This coupling produces extra terms in the dispersion relation not present in uniform circularly birefringent magneto-optic stratified media. Normal mode coupling lifts the degeneracy at frequency band cross-over points under certain conditions and induces a magnetization-dependent optical band gap. This study examines the conditions for band gap formation in the system. It shows that such a frequency-split can be characterized by a simple coupling parameter that depends on the relation between polarization states of local normal modes in adjacent layers. The character of the Bloch states and conditions for maximizing the strength of the band splitting in these systems are analyzed.Comment: 15 pages, 4 figure

    Slow light in photonic crystals

    Full text link
    The problem of slowing down light by orders of magnitude has been extensively discussed in the literature. Such a possibility can be useful in a variety of optical and microwave applications. Many qualitatively different approaches have been explored. Here we discuss how this goal can be achieved in linear dispersive media, such as photonic crystals. The existence of slowly propagating electromagnetic waves in photonic crystals is quite obvious and well known. The main problem, though, has been how to convert the input radiation into the slow mode without loosing a significant portion of the incident light energy to absorption, reflection, etc. We show that the so-called frozen mode regime offers a unique solution to the above problem. Under the frozen mode regime, the incident light enters the photonic crystal with little reflection and, subsequently, is completely converted into the frozen mode with huge amplitude and almost zero group velocity. The linearity of the above effect allows to slow light regardless of its intensity. An additional advantage of photonic crystals over other methods of slowing down light is that photonic crystals can preserve both time and space coherence of the input electromagnetic wave.Comment: 96 pages, 12 figure

    Modulational Instability in Nonlinearity-Managed Optical Media

    Get PDF
    We investigate analytically, numerically, and experimentally the modulational instability in a layered, cubically-nonlinear (Kerr) optical medium that consists of alternating layers of glass and air. We model this setting using a nonlinear Schr\"odinger (NLS) equation with a piecewise constant nonlinearity coefficient and conduct a theoretical analysis of its linear stability, obtaining a Kronig-Penney equation whose forbidden bands correspond to the modulationally unstable regimes. We find very good {\it quantitative} agreement between the theoretical analysis of the Kronig-Penney equation, numerical simulations of the NLS equation, and the experimental results for the modulational instability. Because of the periodicity in the evolution variable arising from the layered medium, we find multiple instability regions rather than just the one that would occur in uniform media.Comment: 13 pages, 12 figures (several with multiple parts); some important changes from the page proof stage implemented in this preprint versio
    • …
    corecore