1,412 research outputs found

    One-Class-at-a-Time Removal Sequence Planning Method for Multiclass Classification Problems

    Get PDF
    Using dynamic programming, this work develops a one-class-at-a-time removal sequence planning method to decompose a multiclass classification problem into a series of two-class problems. Compared with previous decomposition methods, the approach has the following distinct features. First, under the one-class-at-a-time framework, the approach guarantees the optimality of the decomposition. Second, for a K-class problem, the number of binary classifiers required by the method is only K-1. Third, to achieve higher classification accuracy, the approach can easily be adapted to form a committee machine. A drawback of the approach is that its computational burden increases rapidly with the number of classes. To resolve this difficulty, a partial decomposition technique is introduced that reduces the computational cost by generating a suboptimal solution. Experimental results demonstrate that the proposed approach consistently outperforms two conventional decomposition methods

    Stochastic functional descent for learning Support Vector Machines

    Full text link
    We present a novel method for learning Support Vector Machines (SVMs) in the online setting. Our method is generally applicable in that it handles the online learning of the binary, multiclass, and structural SVMs in a unified view. The SVM learning problem consists of optimizing a convex objective function that is composed of two parts: the hinge loss and quadratic regularization. To date, the predominant family of approaches for online SVM learning has been gradient-based methods, such as Stochastic Gradient Descent (SGD). Unfortunately, we note that there are two drawbacks in such approaches: first, gradient-based methods are based on a local linear approximation to the function being optimized, but since the hinge loss is piecewise-linear and nonsmooth, this approximation can be ill-behaved. Second, existing online SVM learning approaches share the same problem formulation with batch SVM learning methods, and they all need to tune a fixed global regularization parameter by cross validation. On the one hand, global regularization is ineffective in handling local irregularities encountered in the online setting; on the other hand, even though the learning problem for a particular global regularization parameter value may be efficiently solved, repeatedly solving for a wide range of values can be costly. We intend to tackle these two problems with our approach. To address the first problem, we propose to perform implicit online update steps to optimize the hinge loss, as opposed to explicit (or gradient-based) updates that utilize subgradients to perform local linearization. Regarding the second problem, we propose to enforce local regularization that is applied to individual classifier update steps, rather than having a fixed global regularization term. Our theoretical analysis suggests that our classifier update steps progressively optimize the structured hinge loss, with the rate controlled by a sequence of regularization parameters; setting these parameters is analogous to setting the stepsizes in gradient-based methods. In addition, we give sufficient conditions for the algorithm's convergence. Experimentally, our online algorithm can match optimal classification performances given by other state-of-the-art online SVM learning methods, as well as batch learning methods, after only one or two passes over the training data. More importantly, our algorithm can attain these results without doing cross validation, while all other methods must perform time-consuming cross validation to determine the optimal choice of the global regularization parameter

    On multi-site damage identification using single-site training data

    Get PDF
    This paper proposes a methodology for developing multi-site damage location systems for engineering structures that can be trained using single-site damaged state data only. The methodology involves training a sequence of binary classifiers based upon single-site damage data and combining the developed classifiers into a robust multi-class damage locator. In this way, the multi-site damage identification problem may be decomposed into a sequence of binary decisions. In this paper Support Vector Classifiers are adopted as the means of making these binary decisions. The proposed methodology represents an advancement on the state of the art in the field of multi-site damage identification which require either: (1) full damaged state data from single- and multi-site damage cases or (2) the development of a physics-based model to make multi-site model predictions. The potential benefit of the proposed methodology is that a significantly reduced number of recorded damage states may be required in order to train a multi-site damage locator without recourse to physics-based model predictions. In this paper it is first demonstrated that Support Vector Classification represents an appropriate approach to the multi-site damage location problem, with methods for combining binary classifiers discussed. Next, the proposed methodology is demonstrated and evaluated through application to a real engineering structure – a Piper Tomahawk trainer aircraft wing – with its performance compared to classifiers trained using the full damaged-state dataset

    Finetuning Pre-Trained Language Models for Sentiment Classification of COVID19 Tweets

    Get PDF
    It is a common practice in today’s world for the public to use different micro-blogging and social networking platforms, predominantly Twitter, to share opinions, ideas, news, and information about many things in life. Twitter is also becoming a popular channel for information sharing during pandemic outbreaks and disaster events. The world has been suffering from economic crises ever since COVID-19 cases started to increase rapidly since January 2020. The virus has killed more than 800 thousand people ever since the discovery as per the statistics from Worldometer [1] which is the authorized tracking website. So many researchers around the globe are researching into this new virus from different perspectives. One such area is analysing micro-blogging sites like twitter to understand public sentiments. Traditional sentiment analysis methods require complex feature engineering. Many embedding representations have come these days but, their context-independent nature limits their representative power in rich context, due to which performance gets degraded in NLP tasks. Transfer learning has gained the popularity and pretrained language models like BERT(bi-directional Encoder Representations from Transformers) and XLNet which is a Generalised autoregressive model have started overtaking traditional machine learning and deep learning models like Random Forests, Naïve Bayes, Convolutional Neural Networks etc. Despite the great performance results by pretrained language models, it has been observed that finetuning a large pretrained model on downstream task with less training instances is prone to degrade the performance of the model. This research is based on a regularization technique called Mixout proposed by Lee (Lee, 2020). Mixout stochastically mixes the parameters of vanilla network and dropout network. This work is to understand the performance variations of finetuning BERT and XLNet base models on COVID-19 tweets by using Mixout regularization for sentiment classification
    • …
    corecore