2,382 research outputs found

    Automated Classification of Airborne Laser Scanning Point Clouds

    Full text link
    Making sense of the physical world has always been at the core of mapping. Up until recently, this has always dependent on using the human eye. Using airborne lasers, it has become possible to quickly "see" more of the world in many more dimensions. The resulting enormous point clouds serve as data sources for applications far beyond the original mapping purposes ranging from flooding protection and forestry to threat mitigation. In order to process these large quantities of data, novel methods are required. In this contribution, we develop models to automatically classify ground cover and soil types. Using the logic of machine learning, we critically review the advantages of supervised and unsupervised methods. Focusing on decision trees, we improve accuracy by including beam vector components and using a genetic algorithm. We find that our approach delivers consistently high quality classifications, surpassing classical methods

    Mapping urban tree species in a tropical environment using airborne multispectral and LiDAR data

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesAccurate and up-to-date urban tree inventory is an essential resource for the development of strategies towards sustainable urban planning, as well as for effective management and preservation of biodiversity. Trees contribute to thermal comfort within urban centers by lessening heat island effect and have a direct impact in the reduction of air pollution. However, mapping individual trees species normally involves time-consuming field work over large areas or image interpretation performed by specialists. The integration of airborne LiDAR data with high-spatial resolution and multispectral aerial image is an alternative and effective approach to differentiate tree species at the individual crown level. This thesis aims to investigate the potential of such remotely sensed data to discriminate 5 common urban tree species using traditional Machine Learning classifiers (Random Forest, Support Vector Machine, and k-Nearest Neighbors) in the tropical environment of Salvador, Brazil. Vegetation indices and texture information were extracted from multispectral imagery, and LiDAR-derived variables for tree crowns, were tested separately and combined to perform tree species classification applying three different classifiers. Random Forest outperformed the other two classifiers, reaching overall accuracy of 82.5% when using combined multispectral and LiDAR data. The results indicate that (1) given the similarity in spectral signature, multispectral data alone is not sufficient to distinguish tropical tree species (only k-NN classifier could detect all species); (2) height values and intensity of crown returns points were the most relevant LiDAR features, combination of both datasets improved accuracy up to 20%; (3) generation of canopy height model derived from LiDAR point cloud is an effective method to delineate individual tree crowns in a semi-automatic approach

    New Computational Methods for Automated Large-Scale Archaeological Site Detection

    Get PDF
    Aquesta tesi doctoral presenta una sèrie d'enfocaments, fluxos de treball i models innovadors en el camp de l'arqueologia computacional per a la detecció automatitzada a gran escala de jaciments arqueològics. S'introdueixen nous conceptes, enfocaments i estratègies, com ara lidar multitemporal, aprenentatge automàtic híbrid, refinament, curriculum learning i blob analysis; així com diferents mètodes d'augment de dades aplicats per primera vegada en el camp de l'arqueologia. S'utilitzen múltiples fonts, com ara imatges de satèl·lits multiespectrals, fotografies RGB de plataformes VANT, mapes històrics i diverses combinacions de sensors, dades i fonts. Els mètodes creats durant el desenvolupament d'aquest doctorat s'han avaluat en projectes en curs: Urbanització a Hispània i la Gàl·lia Mediterrània en el primer mil·lenni aC, detecció de monticles funeraris utilitzant algorismes d'aprenentatge automàtic al nord-oest de la Península Ibèrica, prospecció arqueològica intel·ligent basada en drons (DIASur), i cartografiat del patrimoni arqueològic al sud d'Àsia (MAHSA), per a la qual s'han dissenyat fluxos de treball adaptats als reptes específics del projecte. Aquests nous mètodes han aconseguit proporcionar solucions als problemes comuns d'estudis arqueològics presents en estudis similars, com la baixa precisió en detecció i les poques dades d'entrenament. Els mètodes validats i presentats com a part de la tesi doctoral s'han publicat en accés obert amb el codi disponible perquè puguin implementar-se en altres estudis arqueològics.Esta tesis doctoral presenta una serie de enfoques, flujos de trabajo y modelos innovadores en el campo de la arqueología computacional para la detección automatizada a gran escala de yacimientos arqueológicos. Se introducen nuevos conceptos, enfoques y estrategias, como lidar multitemporal, aprendizaje automático híbrido, refinamiento, curriculum learning y blob analysis; así como diferentes métodos de aumento de datos aplicados por primera vez en el campo de la arqueología. Se utilizan múltiples fuentes, como lidar, imágenes satelitales multiespectrales, fotografías RGB de plataformas VANT, mapas históricos y varias combinaciones de sensores, datos y fuentes. Los métodos creados durante el desarrollo de este doctorado han sido evaluados en proyectos en curso: Urbanización en Iberia y la Galia Mediterránea en el Primer Milenio a. C., Detección de túmulos mediante algoritmos de aprendizaje automático en el Noroeste de la Península Ibérica, Prospección Arqueológica Inteligente basada en Drones (DIASur), y cartografiado del Patrimonio del Sur de Asia (MAHSA), para los que se han diseñado flujos de trabajo adaptados a los retos específicos del proyecto. Estos nuevos métodos han logrado proporcionar soluciones a problemas comunes de la prospección arqueológica presentes en estudios similares, como la baja precisión en detección y los pocos datos de entrenamiento. Los métodos validados y presentados como parte de la tesis doctoral se han publicado en acceso abierto con su código disponible para que puedan implementarse en otros estudios arqueológicos.This doctoral thesis presents a series of innovative approaches, workflows and models in the field of computational archaeology for the automated large-scale detection of archaeological sites. New concepts, approaches and strategies are introduced such as multitemporal lidar, hybrid machine learning, refinement, curriculum learning and blob analysis; as well as different data augmentation methods applied for the first time in the field of archaeology. Multiple sources are used, such as lidar, multispectral satellite imagery, RGB photographs from UAV platform, historical maps, and several combinations of sensors, data, and sources. The methods created during the development of this PhD have been evaluated in ongoing projects: Urbanization in Iberia and Mediterranean Gaul in the First Millennium BC, Detection of burial mounds using machine learning algorithms in the Northwest of the Iberian Peninsula, Drone-based Intelligent Archaeological Survey (DIASur), and Mapping Archaeological Heritage in South Asia (MAHSA), for which workflows adapted to the project’ s specific challenges have been designed. These new methods have managed to provide solutions to common archaeological survey problems, presented in similar large-scale site detection studies, such as the low precision in previous detection studies and how to handle problems with few training data. The validated approaches for site detection presented as part of the PhD have been published as open access papers with freely available code so can be implemented in other archaeological studies

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Classification of Expansive Grassland Species in Different Growth Stages Based on Hyperspectral and LiDAR Data

    Get PDF
    Expansive species classification with remote sensing techniques offers great support for botanical field works aimed at detection of their distribution within areas of conservation value and assessment of the threat caused to natural habitats. Large number of spectral bands and high spatial resolution allows for identification of particular species. LiDAR (Light Detection and Ranging) data provide information about areas such as vegetation structure. Because the species differ in terms of features during the growing season, it is important to know when their spectral responses are unique in the background of the surrounding vegetation. The aim of the study was to identify two expansive grass species: Molinia caerulea and Calamagrostis epigejos in the Natura 2000 area in Poland depending on the period and dataset used. Field work was carried out during late spring, summer and early autumn, in parallel with remote sensing data acquisition. Airborne 1-m resolution HySpex images and LiDAR data were used. HySpex images were corrected geometrically and atmospherically before Minimum Noise Fraction (MNF) transformation and vegetation indices calculation. Based on a LiDAR point cloud generated Canopy Height Model, vegetation structure from discrete and full-waveform data and topographic indexes were generated. Classifications were performed using a Random Forest algorithm. The results show post-classification maps and their accuracies: Kappa value and F1 score being the harmonic mean of producer (PA) and user (UA) accuracy, calculated iteratively. Based on these accuracies and botanical knowledge, it was possible to assess the best identification date and dataset used for analysing both species. For M. caerulea the highest median Kappa was 0.85 (F1 = 0.89) in August and for C. epigejos 0.65 (F1 = 0.73) in September. For both species, adding discrete or full-waveform LiDAR data improved the results. We conclude that hyperspectral (HS) and LiDAR airborne data could be useful to id

    Deep Learning Methods for 3D Aerial and Satellite Data

    Get PDF
    Recent advances in digital electronics have led to an overabundance of observations from electro-optical (EO) imaging sensors spanning high spatial, spectral and temporal resolution. This unprecedented volume, variety, and velocity is overwhelming our capacity to manage and translate that data into actionable information. Although decades of image processing research have taken the human out of the loop for many important tasks, the human analyst is still an irreplaceable link in the image exploitation chain, especially for more complex tasks requiring contextual understanding, memory, discernment, and learning. If knowledge discovery is to keep pace with the growing availability of data, new processing paradigms are needed in order to automate the analysis of earth observation imagery and ease the burden of manual interpretation. To address this gap, this dissertation advances fundamental and applied research in deep learning for aerial and satellite imagery. We show how deep learning---a computational model inspired by the human brain---can be used for (1) tracking, (2) classifying, and (3) modeling from a variety of data sources including full-motion video (FMV), Light Detection and Ranging (LiDAR), and stereo photogrammetry. First we assess the ability of a bio-inspired tracking method to track small targets using aerial videos. The tracker uses three kinds of saliency maps: appearance, location, and motion. Our approach achieves the best overall performance, including being the only method capable of handling long-term occlusions. Second, we evaluate the classification accuracy of a multi-scale fully convolutional network to label individual points in LiDAR data. Our method uses only the 3D-coordinates and corresponding low-dimensional spectral features for each point. Evaluated using the ISPRS 3D Semantic Labeling Contest, our method scored second place with an overall accuracy of 81.6\%. Finally, we validate the prediction capability of our neighborhood-aware network to model the bare-earth surface of LiDAR and stereo photogrammetry point clouds. The network bypasses traditionally-used ground classifications and seamlessly integrate neighborhood features with point-wise and global features to predict a per point Digital Terrain Model (DTM). We compare our results with two widely used softwares for DTM extraction, ENVI and LAStools. Together, these efforts have the potential to alleviate the manual burden associated with some of the most challenging and time-consuming geospatial processing tasks, with implications for improving our response to issues of global security, emergency management, and disaster response

    Clearing the Clouds: Extracting 3D information from amongst the noise

    Get PDF
    Advancements permitting the rapid extraction of 3D point clouds from a variety of imaging modalities across the global landscape have provided a vast collection of high fidelity digital surface models. This has created a situation with unprecedented overabundance of 3D observations which greatly outstrips our current capacity to manage and infer actionable information. While years of research have removed some of the manual analysis burden for many tasks, human analysis is still a cornerstone of 3D scene exploitation. This is especially true for complex tasks which necessitate comprehension of scale, texture and contextual learning. In order to ameliorate the interpretation burden and enable scientific discovery from this volume of data, new processing paradigms are necessary to keep pace. With this context, this dissertation advances fundamental and applied research in 3D point cloud data pre-processing and deep learning from a variety of platforms. We show that the representation of 3D point data is often not ideal and sacrifices fidelity, context or scalability. First ground scanning terrestrial LIght Detection And Ranging (LiDAR) models are shown to have an inherent statistical bias, and present a state of the art method for correcting this, while preserving data fidelity and maintaining semantic structure. This technique is assessed in the dense canopy of Micronesia, with our technique being the best at retaining high levels of detail under extreme down-sampling (\u3c 1%). Airborne systems are then explored with a method which is presented to pre-process data to preserve a global contrast and semantic content in deep learners. This approach is validated with a building footprint detection task from airborne imagery captured in Eastern TN from the 3D Elevation Program (3DEP), our approach was found to achieve significant accuracy improvements over traditional techniques. Finally, topography data spanning the globe is used to assess past and previous global land cover change. Utilizing Shuttle Radar Topography Mission (SRTM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, paired with the airborne preprocessing technique described previously, a model for predicting land-cover change from topography observations is described. The culmination of these efforts have the potential to enhance the capabilities of automated 3D geospatial processing, substantially lightening the burden of analysts, with implications improving our responses to global security, disaster response, climate change, structural design and extraplanetary exploration

    Probabilistic and Deep Learning Algorithms for the Analysis of Imagery Data

    Get PDF
    Accurate object classification is a challenging problem for various low to high resolution imagery data. This applies to both natural as well as synthetic image datasets. However, each object recognition dataset poses its own distinct set of domain-specific problems. In order to address these issues, we need to devise intelligent learning algorithms which require a deep understanding and careful analysis of the feature space. In this thesis, we introduce three new learning frameworks for the analysis of both airborne images (NAIP dataset) and handwritten digit datasets without and with noise (MNIST and n-MNIST respectively). First, we propose a probabilistic framework for the analysis of the NAIP dataset which includes (1) an unsupervised segmentation module based on the Statistical Region Merging algorithm, (2) a feature extraction module that extracts a set of standard hand-crafted texture features from the images, (3) a supervised classification algorithm based on Feedforward Backpropagation Neural Networks, and (4) a structured prediction framework using Conditional Random Fields that integrates the results of the segmentation and classification modules into a single composite model to generate the final class labels. Next, we introduce two new datasets SAT-4 and SAT-6 sampled from the NAIP imagery and use them to evaluate a multitude of Deep Learning algorithms including Deep Belief Networks (DBN), Convolutional Neural Networks (CNN) and Stacked Autoencoders (SAE) for generating class labels. Finally, we propose a learning framework by integrating hand-crafted texture features with a DBN. A DBN uses an unsupervised pre-training phase to perform initialization of the parameters of a Feedforward Backpropagation Neural Network to a global error basin which can then be improved using a round of supervised fine-tuning using Feedforward Backpropagation Neural Networks. These networks can subsequently be used for classification. In the following discussion, we show that the integration of hand-crafted features with DBN shows significant improvement in performance as compared to traditional DBN models which take raw image pixels as input. We also investigate why this integration proves to be particularly useful for aerial datasets using a statistical analysis based on Distribution Separability Criterion. Then we introduce a new dataset called noisy-MNIST (n-MNIST) by adding (1) additive white gaussian noise (AWGN), (2) motion blur and (3) Reduced contrast and AWGN to the MNIST dataset and present a learning algorithm by combining probabilistic quadtrees and Deep Belief Networks. This dynamic integration of the Deep Belief Network with the probabilistic quadtrees provide significant improvement over traditional DBN models on both the MNIST and the n-MNIST datasets. Finally, we extend our experiments on aerial imagery to the class of general texture images and present a theoretical analysis of Deep Neural Networks applied to texture classification. We derive the size of the feature space of textural features and also derive the Vapnik-Chervonenkis dimension of certain classes of Neural Networks. We also derive some useful results on intrinsic dimension and relative contrast of texture datasets and use these to highlight the differences between texture datasets and general object recognition datasets

    Hybrid MSRM-Based Deep Learning and Multitemporal Sentinel 2-Based Machine Learning Algorithm Detects Near 10k Archaeological Tumuli in North-Western Iberia

    Get PDF
    This paper presents an algorithm for large-scale automatic detection of burial mounds, one of the most common types of archaeological sites globally, using LiDAR and multispectral satellite data. Although previous attempts were able to detect a good proportion of the known mounds in a given area, they still presented high numbers of false positives and low precision values. Our proposed approach combines random forest for soil classification using multitemporal multispectral Sentinel-2 data and a deep learning model using YOLOv3 on LiDAR data previously pre-processed using a multi–scale relief model. The resulting algorithm significantly improves previous attempts with a detection rate of 89.5%, an average precision of 66.75%, a recall value of 0.64 and a precision of 0.97, which allowed, with a small set of training data, the detection of 10,527 burial mounds over an area of near 30,000 km2, the largest in which such an approach has ever been applied. The open code and platforms employed to develop the algorithm allow this method to be applied anywhere LiDAR data or high-resolution digital terrain models are available

    Vegetation Detection and Classification for Power Line Monitoring

    Get PDF
    Electrical network maintenance inspections must be regularly executed, to provide a continuous distribution of electricity. In forested countries, the electrical network is mostly located within the forest. For this reason, during these inspections, it is also necessary to assure that vegetation growing close to the power line does not potentially endanger it, provoking forest fires or power outages. Several remote sensing techniques have been studied in the last years to replace the labor-intensive and costly traditional approaches, be it field based or airborne surveillance. Besides the previously mentioned disadvantages, these approaches are also prone to error, since they are dependent of a human operator’s interpretation. In recent years, Unmanned Aerial Vehicle (UAV) platform applicability for this purpose has been under debate, due to its flexibility and potential for customisation, as well as the fact it can fly close to the power lines. The present study proposes a vegetation management and power line monitoring method, using a UAV platform. This method starts with the collection of point cloud data in a forest environment composed of power line structures and vegetation growing close to it. Following this process, multiple steps are taken, including: detection of objects in the working environment; classification of said objects into their respective class labels using a feature-based classifier, either vegetation or power line structures; optimisation of the classification results using point cloud filtering or segmentation algorithms. The method is tested using both synthetic and real data of forested areas containing power line structures. The Overall Accuracy of the classification process is about 87% and 97-99% for synthetic and real data, respectively. After the optimisation process, these values were refined to 92% for synthetic data and nearly 100% for real data. A detailed comparison and discussion of results is presented, providing the most important evaluation metrics and a visual representations of the attained results.Manutenções regulares da rede elétrica devem ser realizadas de forma a assegurar uma distribuição contínua de eletricidade. Em países com elevada densidade florestal, a rede elétrica encontra-se localizada maioritariamente no interior das florestas. Por isso, durante estas inspeções, é necessário assegurar também que a vegetação próxima da rede elétrica não a coloca em risco, provocando incêndios ou falhas elétricas. Diversas técnicas de deteção remota foram estudadas nos últimos anos para substituir as tradicionais abordagens dispendiosas com mão-de-obra intensiva, sejam elas através de vigilância terrestre ou aérea. Além das desvantagens mencionadas anteriormente, estas abordagens estão também sujeitas a erros, pois estão dependentes da interpretação de um operador humano. Recentemente, a aplicabilidade de plataformas com Unmanned Aerial Vehicles (UAV) tem sido debatida, devido à sua flexibilidade e potencial personalização, assim como o facto de conseguirem voar mais próximas das linhas elétricas. O presente estudo propõe um método para a gestão da vegetação e monitorização da rede elétrica, utilizando uma plataforma UAV. Este método começa pela recolha de dados point cloud num ambiente florestal composto por estruturas da rede elétrica e vegetação em crescimento próximo da mesma. Em seguida,múltiplos passos são seguidos, incluindo: deteção de objetos no ambiente; classificação destes objetos com as respetivas etiquetas de classe através de um classificador baseado em features, vegetação ou estruturas da rede elétrica; otimização dos resultados da classificação utilizando algoritmos de filtragem ou segmentação de point cloud. Este método é testado usando dados sintéticos e reais de áreas florestais com estruturas elétricas. A exatidão do processo de classificação é cerca de 87% e 97-99% para os dados sintéticos e reais, respetivamente. Após o processo de otimização, estes valores aumentam para 92% para os dados sintéticos e cerca de 100% para os dados reais. Uma comparação e discussão de resultados é apresentada, fornecendo as métricas de avaliação mais importantes e uma representação visual dos resultados obtidos
    corecore