25,673 research outputs found

    Multiple Fake Classes GAN for Data Augmentation in Face Image Dataset

    Get PDF
    Class-imbalanced datasets often contain one or more class that are under-represented in a dataset. In such a situation, learning algorithms are often biased toward the majority class instances. Therefore, some modification to the learning algorithm or the data itself is required before attempting a classification task. Data augmentation is one common approach used to improve the presence of the minority class instances and rebalance the dataset. However, simple augmentation techniques such as applying some affine transformation to the data, may not be sufficient in extreme cases, and often do not capture the variance present in the dataset. In this paper, we propose a new approach to generate more samples from minority class instances based on Generative Adversarial Neural Networks (GAN). We introduce a new Multiple Fake Class Generative Adversarial Networks (MFC-GAN) and generate additional samples to rebalance the dataset. We show that by introducing multiple fake class and oversampling, the model can generate the required minority samples. We evaluate our model on face generation task from attributes using a reduced number of samples in the minority class. Results obtained showed that MFC-GAN produces plausible minority samples that improve the classification performance compared with state-of-the-art ACGAN generated samples

    A Generative Adversarial Approach for Zero-Shot Learning from Noisy Texts

    Full text link
    Most existing zero-shot learning methods consider the problem as a visual semantic embedding one. Given the demonstrated capability of Generative Adversarial Networks(GANs) to generate images, we instead leverage GANs to imagine unseen categories from text descriptions and hence recognize novel classes with no examples being seen. Specifically, we propose a simple yet effective generative model that takes as input noisy text descriptions about an unseen class (e.g.Wikipedia articles) and generates synthesized visual features for this class. With added pseudo data, zero-shot learning is naturally converted to a traditional classification problem. Additionally, to preserve the inter-class discrimination of the generated features, a visual pivot regularization is proposed as an explicit supervision. Unlike previous methods using complex engineered regularizers, our approach can suppress the noise well without additional regularization. Empirically, we show that our method consistently outperforms the state of the art on the largest available benchmarks on Text-based Zero-shot Learning.Comment: To appear in CVPR1
    • …
    corecore