50,771 research outputs found

    One method for proving inequalities by computer

    Full text link
    In this article we consider a method for proving a class of analytical inequalities via minimax rational approximations. All numerical calculations in this paper are given by Maple computer program.Comment: Accepted in Journal of Inequalities and Application

    The natural algorithmic approach of mixed trigonometric-polynomial problems

    Full text link
    The aim of this paper is to present a new algorithm for proving mixed trigonometric-polynomial inequalities by reducing to polynomial inequalities. Finally, we show the great applicability of this algorithm and as examples, we use it to analyze some new rational (Pade) approximations of the function cos2(x)\cos^2(x), and to improve a class of inequalities by Z.-H. Yang. The results of our analysis could be implemented by means of an automated proof assistant, so our work is a contribution to the library of automatic support tools for proving various analytic inequalities

    Formal Proofs for Nonlinear Optimization

    Get PDF
    We present a formally verified global optimization framework. Given a semialgebraic or transcendental function ff and a compact semialgebraic domain KK, we use the nonlinear maxplus template approximation algorithm to provide a certified lower bound of ff over KK. This method allows to bound in a modular way some of the constituents of ff by suprema of quadratic forms with a well chosen curvature. Thus, we reduce the initial goal to a hierarchy of semialgebraic optimization problems, solved by sums of squares relaxations. Our implementation tool interleaves semialgebraic approximations with sums of squares witnesses to form certificates. It is interfaced with Coq and thus benefits from the trusted arithmetic available inside the proof assistant. This feature is used to produce, from the certificates, both valid underestimators and lower bounds for each approximated constituent. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of multivariate transcendental inequalities. We illustrate the performance of our formal framework on some of these inequalities as well as on examples from the global optimization literature.Comment: 24 pages, 2 figures, 3 table

    Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations

    Full text link
    We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient implementation of the verification procedure which can prove non-trivial high-dimensional inequalities in several seconds. We developed the verification tool as a part of the Flyspeck project (a formal proof of the Kepler conjecture). The Flyspeck project includes about 1000 nonlinear inequalities. We successfully tested our method on more than 100 Flyspeck inequalities and estimated that the formal verification procedure is about 3000 times slower than an informal verification method implemented in C++. We also describe future work and prospective optimizations for our method.Comment: 15 page
    corecore