2,884 research outputs found

    Whole-Body MPC for a Dynamically Stable Mobile Manipulator

    Full text link
    Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this paper, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction as one optimization problem for an inherently unstable robot. The optimization is performed using a Model Predictive Control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening

    Module-based structure design of wheeled mobile robot

    Get PDF
    This paper proposes an innovative and systematic approach for synthesizing mechanical structures of wheeled mobile robots. The principle and terminologies used for the proposed synthesis method are presented by adopting the concept of modular design, isomorphic and non-isomorphic, and set theory with its associated combinatorial mathematics. The modular-based innovative synthesis and design of wheeled robots were conducted at two levels. Firstly at the module level, by creative design and analysing the structures of classic wheeled robots, a wheel module set containing four types of wheel mechanisms, a suspension module set consisting of five types of suspension frames and a chassis module set composed of five types of rigid or articulated chassis were designed and generalized. Secondly at the synthesis level, two kinds of structure synthesis modes, namely the isomorphic-combination mode and the non-isomorphic combination mode were proposed to synthesize mechanical structures of wheeled robots; which led to 241 structures for wheeled mobile robots including 236 novel ones. Further, mathematical models and a software platform were developed to provide appropriate and intuitive tools for simulating and evaluating performance of the wheeled robots that were proposed in this paper. Eventually, physical prototypes of sample wheeled robots/rovers were developed and tested so as to prove and validate the principle and methodology presented in this paper

    Synchronizing of Stabilizing Platform Mounted on a Two-Wheeled Robot

    Get PDF
    This paper represents the designing, building, and testing of a self-stabilizing platform mounted on a self-balancing robot. For the self-stabilizing platform, a servo motor is used and for the self-balancing robot, two dc motors are used with an encoder, inertial measurement unit, motor driver, an Arduino UNO microcontroller board. A PID controller is used to control the balancing of the system. The PID controller gains (Kp, Ki, and Kd) were evaluated experimentally. The value of the tilted angle from IMU was fed to the PID controller to control the actuated motors for balancing the system. For the self-stabilizing control part, whenever the robot tilted, it maintained the horizontal position by rotating that much in the opposite direction

    Design, Construction, Energy Modeling, and Navigation of a Six-Wheeled Differential Drive Robot to Deliver Medical Supplies inside Hospitals

    Get PDF
    Differential drive mobile robots have been the most ubiquitous kind of robots for the last few decades. As each of the wheels of a differential drive mobile robot can be controlled, it provides additional flexibility to the end-users in creating new applications. These applications include personal assistance, security, warehouse and distribution applications, ocean and space exploration, etc. In a clinic or hospital, the delivery of medicines and patients’ records are frequently needed activities. Medical personnel often find these activities repetitive and time-consuming. Our research was to design, construct, produce an energy model, and develop a navigation control method for a six-wheeled differential drive robot designed to deliver medical supplies inside the hospital. Such a robot is expected to lessen the workload of medical staff. Therefore, the design and implementation of a six-wheeled differential drive robot with a password-protected medicine carrier were presented. This password-protected medicine carrier ensures that only the authorized medical personnel can receive medical supplies. The low-cost robot base and the medicine carrier were built in real life. Besides the actual robot design and fabrication, a kinematic model for the robot was developed, and a navigation control algorithm to avoid obstacles was implemented using MATLAB/Simulink. The kinematic modeling is helpful for the robot to achieve better energy optimization. To develop the object avoidance algorithm, we investigated the use of the Robot Operating System (ROS) and the Simultaneous Localization and Mapping (SLAM) algorithm for the implementation of the mapping and navigation of a robotic platform named TurtleBot 2. Finally, using the Webot robot simulator, the navigation of the six-wheeled mobile robot was demonstrated in a hospital-like simulation environment

    Optimal design and experimental verification of a spherical-wheel composite robot with automatic transformation system

    Get PDF
    This paper presents a design for a dual-mode prototype robot with the advantages of both a spherical robot and wheeled robot. A spherical robot has flexible movement capabilities, and the spherical shell can protect the mechanism and electronic devices. A wheeled mobile robot operates at high speed on a flat road. Its simple structure and control system has made it a popular choice in the field of robotics. Our objective was to develop a new concept robot capable of combining two different locomotion mechanisms to increase the locomotion stability and efficiency. The proposed mobile robot prototype was found to be capable and suitable in different situations. The exchange of modes between the spherical and the wheeled robot was realized by a structural change of the robot. The spherical-wheel mobile robot prototype is composed of a deformable spherical shell system, the propulsion system for the sphere and a wheeled mobile unit module. The exchange of locomotion modes was implemented by changing the geometric structure of spherical shell. The mechanical structure of the composite robot is presented in detail as well as the control system including hardware components and the software. The control system allowed for the automatic transformation of the composite robot between either of the locomotion modes. Based on analysis and simulation, the mechanism was optimized in its configuration and dimension to guarantee that robot had a compact structure and high efficiency. Finally, the experimental results of the transformation and motion processes provided dynamic motion parameters and verified the feasibility of the robot prototype
    corecore