7,776 research outputs found

    Lower Bounds for (Non-Monotone) Comparator Circuits

    Get PDF
    Comparator circuits are a natural circuit model for studying the concept of bounded fan-out computations, which intuitively corresponds to whether or not a computational model can make "copies" of intermediate computational steps. Comparator circuits are believed to be weaker than general Boolean circuits, but they can simulate Branching Programs and Boolean formulas. In this paper we prove the first superlinear lower bounds in the general (non-monotone) version of this model for an explicitly defined function. More precisely, we prove that the n-bit Element Distinctness function requires ?((n/ log n)^(3/2)) size comparator circuits

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page

    Negative weights make adversaries stronger

    Full text link
    The quantum adversary method is one of the most successful techniques for proving lower bounds on quantum query complexity. It gives optimal lower bounds for many problems, has application to classical complexity in formula size lower bounds, and is versatile with equivalent formulations in terms of weight schemes, eigenvalues, and Kolmogorov complexity. All these formulations rely on the principle that if an algorithm successfully computes a function then, in particular, it is able to distinguish between inputs which map to different values. We present a stronger version of the adversary method which goes beyond this principle to make explicit use of the stronger condition that the algorithm actually computes the function. This new method, which we call ADV+-, has all the advantages of the old: it is a lower bound on bounded-error quantum query complexity, its square is a lower bound on formula size, and it behaves well with respect to function composition. Moreover ADV+- is always at least as large as the adversary method ADV, and we show an example of a monotone function for which ADV+-(f)=Omega(ADV(f)^1.098). We also give examples showing that ADV+- does not face limitations of ADV like the certificate complexity barrier and the property testing barrier.Comment: 29 pages, v2: added automorphism principle, extended to non-boolean functions, simplified examples, added matching upper bound for AD

    Formulas vs. Circuits for Small Distance Connectivity

    Full text link
    We give the first super-polynomial separation in the power of bounded-depth boolean formulas vs. circuits. Specifically, we consider the problem Distance k(n)k(n) Connectivity, which asks whether two specified nodes in a graph of size nn are connected by a path of length at most k(n)k(n). This problem is solvable (by the recursive doubling technique) on {\bf circuits} of depth O(logk)O(\log k) and size O(kn3)O(kn^3). In contrast, we show that solving this problem on {\bf formulas} of depth logn/(loglogn)O(1)\log n/(\log\log n)^{O(1)} requires size nΩ(logk)n^{\Omega(\log k)} for all k(n)loglognk(n) \leq \log\log n. As corollaries: (i) It follows that polynomial-size circuits for Distance k(n)k(n) Connectivity require depth Ω(logk)\Omega(\log k) for all k(n)loglognk(n) \leq \log\log n. This matches the upper bound from recursive doubling and improves a previous Ω(loglogk)\Omega(\log\log k) lower bound of Beame, Pitassi and Impagliazzo [BIP98]. (ii) We get a tight lower bound of sΩ(d)s^{\Omega(d)} on the size required to simulate size-ss depth-dd circuits by depth-dd formulas for all s(n)=nO(1)s(n) = n^{O(1)} and d(n)logloglognd(n) \leq \log\log\log n. No lower bound better than sΩ(1)s^{\Omega(1)} was previously known for any d(n)O(1)d(n) \nleq O(1). Our proof technique is centered on a new notion of pathset complexity, which roughly speaking measures the minimum cost of constructing a set of (partial) paths in a universe of size nn via the operations of union and relational join, subject to certain density constraints. Half of our proof shows that bounded-depth formulas solving Distance k(n)k(n) Connectivity imply upper bounds on pathset complexity. The other half is a combinatorial lower bound on pathset complexity

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    An average-case depth hierarchy theorem for Boolean circuits

    Full text link
    We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND\mathsf{AND}, OR\mathsf{OR}, and NOT\mathsf{NOT} gates. Our hierarchy theorem says that for every d2d \geq 2, there is an explicit nn-variable Boolean function ff, computed by a linear-size depth-dd formula, which is such that any depth-(d1)(d-1) circuit that agrees with ff on (1/2+on(1))(1/2 + o_n(1)) fraction of all inputs must have size exp(nΩ(1/d)).\exp({n^{\Omega(1/d)}}). This answers an open question posed by H{\aa}stad in his Ph.D. thesis. Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite relative to a random oracle with probability 1, confirming a conjecture of H{\aa}stad, Cai, and Babai. We also use our result to show that there is no "approximate converse" to the results of Linial, Mansour, Nisan and Boppana on the total influence of small-depth circuits, thus answering a question posed by O'Donnell, Kalai, and Hatami. A key ingredient in our proof is a notion of \emph{random projections} which generalize random restrictions

    The quantum adversary method and classical formula size lower bounds

    Get PDF
    We introduce two new complexity measures for Boolean functions, or more generally for functions of the form f:S->T. We call these measures sumPI and maxPI. The quantity sumPI has been emerging through a line of research on quantum query complexity lower bounds via the so-called quantum adversary method [Amb02, Amb03, BSS03, Zha04, LM04], culminating in [SS04] with the realization that these many different formulations are in fact equivalent. Given that sumPI turns out to be such a robust invariant of a function, we begin to investigate this quantity in its own right and see that it also has applications to classical complexity theory. As a surprising application we show that sumPI^2(f) is a lower bound on the formula size, and even, up to a constant multiplicative factor, the probabilistic formula size of f. We show that several formula size lower bounds in the literature, specifically Khrapchenko and its extensions [Khr71, Kou93], including a key lemma of [Has98], are in fact special cases of our method. The second quantity we introduce, maxPI(f), is always at least as large as sumPI(f), and is derived from sumPI in such a way that maxPI^2(f) remains a lower bound on formula size. While sumPI(f) is always a lower bound on the quantum query complexity of f, this is not the case in general for maxPI(f). A strong advantage of sumPI(f) is that it has both primal and dual characterizations, and thus it is relatively easy to give both upper and lower bounds on the sumPI complexity of functions. To demonstrate this, we look at a few concrete examples, for three functions: recursive majority of three, a function defined by Ambainis, and the collision problem.Comment: Appears in Conference on Computational Complexity 200
    corecore