1,542 research outputs found

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Real-time simulation and visualisation of cloth using edge-based adaptive meshes

    Get PDF
    Real-time rendering and the animation of realistic virtual environments and characters has progressed at a great pace, following advances in computer graphics hardware in the last decade. The role of cloth simulation is becoming ever more important in the quest to improve the realism of virtual environments. The real-time simulation of cloth and clothing is important for many applications such as virtual reality, crowd simulation, games and software for online clothes shopping. A large number of polygons are necessary to depict the highly exible nature of cloth with wrinkling and frequent changes in its curvature. In combination with the physical calculations which model the deformations, the effort required to simulate cloth in detail is very computationally expensive resulting in much diffculty for its realistic simulation at interactive frame rates. Real-time cloth simulations can lack quality and realism compared to their offline counterparts, since coarse meshes must often be employed for performance reasons. The focus of this thesis is to develop techniques to allow the real-time simulation of realistic cloth and clothing. Adaptive meshes have previously been developed to act as a bridge between low and high polygon meshes, aiming to adaptively exploit variations in the shape of the cloth. The mesh complexity is dynamically increased or refined to balance quality against computational cost during a simulation. A limitation of many approaches is they do not often consider the decimation or coarsening of previously refined areas, or otherwise are not fast enough for real-time applications. A novel edge-based adaptive mesh is developed for the fast incremental refinement and coarsening of a triangular mesh. A mass-spring network is integrated into the mesh permitting the real-time adaptive simulation of cloth, and techniques are developed for the simulation of clothing on an animated character

    An efficient rotation-free triangle for drape/cloth simulations - Part I: model improvement, dynamic simulation and adaptive remeshing

    Get PDF
    This series of two papers aim to improve the rotation-free (RF) triangle model previously developed by the authors and apply it for drape/cloth simulations. To avoid a previously un-observed drawback, the membrane strain obtained from the three-node displacement interpolation is replaced by the one obtained from the six-node interpolation. Dynamic simulations are made possible by explicit time integration. Instead of using dense structural meshes, the quality of draped patterns is improved by global adaptive remeshing. The works in this paper provide important and necessary techniques for practical applications of the RF triangle in the drape simulation. In part II, other techniques including collision handling and garment construction are further discussed and some practical applications of garments on still and moving human body model would be presented.postprin

    Drape simulation using solid-shell elements and adaptive mesh subdivision

    Get PDF
    In this paper, 4-node quadrilateral and 3-node triangular solid-shell elements are applied to drape simulations. With locking issues alleviated by the assumed natural strain method and plane-stress enforcement, static and dynamic drape problems are attempted by the quadrilateral element. If the drape is deep and the mesh density is inadequate, non-realistic sharp folds are predicted due to the non-physical interpenetration of top and bottom element surfaces. To avoid the interpenetration, a reversible adaptive subdivision based on the 1–4 splitting method is developed. To ensure displacement compatibility among elements at different subdivision levels, macro-transition elements are formed by quadrilateral and triangular solid-shell elements. To reduce the dynamic oscillation induced by newly inserted nodes, the discrete Kirchhoff condition is employed to determine the related nodal variables. Dynamic drape examples using adaptive meshing are presented. It can be seen that the predictions look realistic and deep drapes can be predicted with the interpenetration avoided yet the required number of nodes can be kept relatively small.postprin

    Position Based Balloon Angioplasty

    Get PDF
    Balloon angioplasty is an endovascular procedure to widen narrowed or obstructed blood vessels, typically to treat arterial atherosclerosis. Simulating angioplasty procedure in the complex vascular structures is a challenge task since the balloon and vessels are both flexible bodies. In this paper, we proposed a position based balloon physical model to solve nonlinear physical deformation in the process of balloon inflation. Firstly, the balloon is discrete modeled by the closed triangle mesh, and the hyperelastic membrane material and continuum based formulation are combined to compute the mechanical properties in the process of balloon inflation. Then, an adaptive air mesh generation algorithm is proposed as a preprocessing procedure for accelerating the coming collision process between balloon and blood vessel according to the characteristic of collision area which is relative fixed. The experiment results show that this physical model is feasible, which could simulate the contact and deformation process between the inflation balloon and the diseased blood vessel wall with good robustness and in realtime
    • …
    corecore