9,639 research outputs found

    Introduction Of Clusterization Principles In The Solution Of Problems Of Energy Efficiency And Ecological Safety Of The Existent Building Fund

    Get PDF
    The aim of the work is to introduce clusterization principles in the solution of problems of energy efficiency and ecological safety of the existent building fund. The material of the research is the process of modeling of energetically effective architecture-building clusters. In this sense it is topical and expedient to elaborate technologies and schemes, able to support making decisions as to the formation of energetically effective architecture-building clusters. The main attention is paid to the solution of infrastructure problems of energy saving of the architecture-building branch, connected with the absence of universal models, distinct algorithms of the formation of energy efficiency clusters and reliable instruments of their activity optimization. But realization of advantages of energy efficiency clusters is possible only at introducing effective mechanisms of the formation of a structure, able to provide a result, optimal by an energy efficiency criterion. The work offers a scheme of the formation process of such structure. The synthesis of models of energetically effective architecture-building clusters is based on principles of the systemic construction of geometric models and provides the imitative modeling of different development scenarios of synthesized clusters. At this stage of the research a function of making decisions as to the real cluster formation is left for experts. But an algorithm of the synthesis of models provides the formation of a knowledge base that will be in further a base of an “internal model” of the intellectual system of supporting decisions making, elaborated for modeling cluster structures. The scientific novelty of the work is in the elaboration of theoretical bases of the technology of coordinating the structure with object properties

    Methodology to develop a geometric modeling process according to collaborative constraints

    Get PDF
    A product design goes through a Digital Mock-Up which is based on the product geometric model. This latter has an important role in the design project whose exploitation mainly depends on how it has been established [1]. Furthermore, the growing competitive context hardly encourages firms to implement new working methods like collaborative engineering. However, its implementation in combination with product geometric data generates many problems in terms of project and data management. For this purpose, this article proposes a methodological solution to the problem at hand. Moreover the problem gets complicated as the project progresses. As a result, the detailed design phase becomes critical particularly in the face of this problem. Therefore, the current article focuses on this phase of the product design process through an example

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Integrated product relationships management : a model to enable concurrent product design and assembly sequence planning

    Get PDF
    The paper describes a novel approach to product relationships management in the context of concurrent engineering and product lifecycle management (PLM). Current industrial practices in product data management and manufacturing process management systems require better efficiency, flexibility, and sensitivity in managing product information at various levels of abstraction throughout its lifecycle. The aim of the proposed work is to manage vital yet complex and inherent product relationship information to enable concurrent product design and assembly sequence planning. Indeed, the definition of the product with its assembly sequence requires the management and the understanding of the numerous product relationships, ensuring consistency between the product and its components. This main objective stresses the relational design paradigm by focusing on product relationships along its lifecycle. This paper gives the detailed description of the background and models which highlight the need for a more efficient PLM approach. The proposed theoretical approach is then described in detail. A separate paper will focus on the implementation of the proposed approach in a PLM-based application, and an in-depth case study to evaluate the implementation of the novel approach will also be given
    • 

    corecore