31,128 research outputs found

    Automatic Document Topic Identification Using Hierarchical Ontology Extracted from Human Background Knowledge

    Get PDF
    The rapid growth in the number of documents available to various end users from around the world has led to a greatly increased need for machine understanding of their topics, as well as for automatic grouping of related documents. This constitutes one of the main current challenges in text mining. We introduce in this thesis a novel approach for identifying document topics. In this approach, we try to utilize human background knowledge to help us to automatically find the best matching topic for input documents. There are several applications for this task. For example, it can be used to improve the relevancy of search engine results by categorizing the search results according to their general topic. It can also give users the ability to choose the domain which is most relevant to their needs. It can also be used for an application like a news publisher, where we want to automatically assign each news article to one of the predefined news main topics. In order to achieve this, we need to extract background knowledge in a form appropriate to this task. The thesis contributions can be summarized into two main modules. In the first module, we introduce a new approach to extract background knowledge from a human knowledge source, in the form of a knowledge repository, and store it in a well-structured and organized form, namely an ontology. We define the methodology of identifying ontological concepts, as well as defining the relations between these concepts. We use the ontology to infer the semantic similarity between documents, as well as to identify their topics. We apply our proposed approach using perhaps the best-known of the knowledge repositories, namely Wikipedia. The second module of this dissertation defines the framework for automatic document topic identification (ADTI). We present a new approach that utilizes the knowledge stored in the created ontology to automatically find the best matching topics for input documents, without the need for a training process such as in document classification. We compare ADTI to other text mining tasks by conducting several experiments to compare the performance of ADTI and its competitors, namely document clustering and document classification. Results show that our document topic identification approach outperforms several document clustering techniques. They show also that while ADTI does not require training, it nevertheless shows competitive performance with one of the state-of-the-art methods for document classification

    Concept Extraction and Clustering for Topic Digital Library Construction

    Get PDF
    This paper is to introduce a new approach to build topic digital library using concept extraction and document clustering. Firstly, documents in a special domain are automatically produced by document classification approach. Then, the keywords of each document are extracted using the machine learning approach. The keywords are used to cluster the documents subset. The clustered result is the taxonomy of the subset. Lastly, the taxonomy is modified to the hierarchical structure for user navigation by manual adjustments. The topic digital library is constructed after combining the full-text retrieval and hierarchical navigation function

    A Word Sense-Oriented User Interface for Interactive Multilingual Text Retrieval

    Get PDF
    In this paper we present an interface for supporting a user in an interactive cross-language search process using semantic classes. In order to enable users to access multilingual information, different problems have to be solved: disambiguating and translating the query words, as well as categorizing and presenting the results appropriately. Therefore, we first give a brief introduction to word sense disambiguation, cross-language text retrieval and document categorization and finally describe recent achievements of our research towards an interactive multilingual retrieval system. We focus especially on the problem of browsing and navigation of the different word senses in one source and possibly several target languages. In the last part of the paper, we discuss the developed user interface and its functionalities in more detail

    Automated user modeling for personalized digital libraries

    Get PDF
    Digital libraries (DL) have become one of the most typical ways of accessing any kind of digitalized information. Due to this key role, users welcome any improvements on the services they receive from digital libraries. One trend used to improve digital services is through personalization. Up to now, the most common approach for personalization in digital libraries has been user-driven. Nevertheless, the design of efficient personalized services has to be done, at least in part, in an automatic way. In this context, machine learning techniques automate the process of constructing user models. This paper proposes a new approach to construct digital libraries that satisfy user’s necessity for information: Adaptive Digital Libraries, libraries that automatically learn user preferences and goals and personalize their interaction using this information

    Adaptive content mapping for internet navigation

    Get PDF
    The Internet as the biggest human library ever assembled keeps on growing. Although all kinds of information carriers (e.g. audio/video/hybrid file formats) are available, text based documents dominate. It is estimated that about 80% of all information worldwide stored electronically exists in (or can be converted into) text form. More and more, all kinds of documents are generated by means of a text processing system and are therefore available electronically. Nowadays, many printed journals are also published online and may even discontinue to appear in print form tomorrow. This development has many convincing advantages: the documents are both available faster (cf. prepress services) and cheaper, they can be searched more easily, the physical storage only needs a fraction of the space previously necessary and the medium will not age. For most people, fast and easy access is the most interesting feature of the new age; computer-aided search for specific documents or Web pages becomes the basic tool for information-oriented work. But this tool has problems. The current keyword based search machines available on the Internet are not really appropriate for such a task; either there are (way) too many documents matching the specified keywords are presented or none at all. The problem lies in the fact that it is often very difficult to choose appropriate terms describing the desired topic in the first place. This contribution discusses the current state-of-the-art techniques in content-based searching (along with common visualization/browsing approaches) and proposes a particular adaptive solution for intuitive Internet document navigation, which not only enables the user to provide full texts instead of manually selected keywords (if available), but also allows him/her to explore the whole database

    What Works Better? A Study of Classifying Requirements

    Full text link
    Classifying requirements into functional requirements (FR) and non-functional ones (NFR) is an important task in requirements engineering. However, automated classification of requirements written in natural language is not straightforward, due to the variability of natural language and the absence of a controlled vocabulary. This paper investigates how automated classification of requirements into FR and NFR can be improved and how well several machine learning approaches work in this context. We contribute an approach for preprocessing requirements that standardizes and normalizes requirements before applying classification algorithms. Further, we report on how well several existing machine learning methods perform for automated classification of NFRs into sub-categories such as usability, availability, or performance. Our study is performed on 625 requirements provided by the OpenScience tera-PROMISE repository. We found that our preprocessing improved the performance of an existing classification method. We further found significant differences in the performance of approaches such as Latent Dirichlet Allocation, Biterm Topic Modeling, or Naive Bayes for the sub-classification of NFRs.Comment: 7 pages, the 25th IEEE International Conference on Requirements Engineering (RE'17

    Survey of data mining approaches to user modeling for adaptive hypermedia

    Get PDF
    The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio

    ImageSieve: Exploratory search of museum archives with named entity-based faceted browsing

    Get PDF
    Over the last few years, faceted search emerged as an attractive alternative to the traditional "text box" search and has become one of the standard ways of interaction on many e-commerce sites. However, these applications of faceted search are limited to domains where the objects of interests have already been classified along several independent dimensions, such as price, year, or brand. While automatic approaches to generate faceted search interfaces were proposed, it is not yet clear to what extent the automatically-produced interfaces will be useful to real users, and whether their quality can match or surpass their manually-produced predecessors. The goal of this paper is to introduce an exploratory search interface called ImageSieve, which shares many features with traditional faceted browsing, but can function without the use of traditional faceted metadata. ImageSieve uses automatically extracted and classified named entities, which play important roles in many domains (such as news collections, image archives, etc.). We describe one specific application of ImageSieve for image search. Here, named entities extracted from the descriptions of the retrieved images are used to organize a faceted browsing interface, which then helps users to make sense of and further explore the retrieved images. The results of a user study of ImageSieve demonstrate that a faceted search system based on named entities can help users explore large collections and find relevant information more effectively
    corecore