214 research outputs found

    Artificial Intelligence for the Advancement of Lunar and Planetary Science and Exploration

    Get PDF
    AI-driven methods have potential to minimise manual labour during planetary data processing and aid ongoing missions with real-time data analysis. This white paper focuses on key areas of AI-driven research, the need for open source training data, and the importance of collaboration between academia and industries to advance AI-driven research

    Engineering a Low-Cost Remote Sensing Capability for Deep-Space Applications

    Full text link
    Systems engineering (SE) has been a useful tool for providing objective processes to breaking down complex technical problems to simpler tasks, while concurrently generating metrics to provide assurance that the solution is fit-for-purpose. Tailored forms of SE have also been used by cubesat mission designers to assist in reducing risk by providing iterative feedback and key artifacts to provide managers with the evidence to adjust resources and tasking for success. Cubesat-sized spacecraft are being planned, built and in some cases, flown to provide a lower-cost entry point for deep-space exploration. This is particularly important for agencies and countries with lower space exploration budgets, where specific mission objectives can be used to develop tailored payloads within tighter constraints, while also returning useful scientific results or engineering data. In this work, a tailored SE tradespace approach was used to help determine how a 6 unit (6U) cubesat could be built from commercial-off-the-shelf (COTS)-based components and undertake remote sensing missions near Mars or near-Earth Asteroids. The primary purpose of these missions is to carry a hyperspectral sensor sensitive to 600-800nm wavelengths (hereafter defined as “red-edge”), that will investigate mineralogy characteristics commonly associated with oxidizing and hydrating environments in red-edge. Minerals of this type remain of high interest for indicators of present or past habitability for life, or active geologic processes. Implications of operating in a deep-space environment were considered as part of engineering constraints of the design, including potential reduction of available solar energy, changes in thermal environment and background radiation, and vastly increased communications distances. The engineering tradespace analysis identified realistic COTS options that could satisfy mission objectives for the 6U cubesat bus while also accommodating a reasonable degree of risk. The exception was the communication subsystem, in which case suitable capability was restricted to one particular option. This analysis was used to support an additional trade investigation into the type of sensors that would be most suitable for building the red-edge hyperspectral payload. This was in part constrained by ensuring not only that readily available COTS sensors were used, but that affordability, particularly during a geopolitical environment that was affecting component supply surety and access to manufacturing facilities, was optimized. It was found that a number of sensor options were available for designing a useful instrument, although the rapid development and life-of-type issues with COTS sensors restricted the ability to obtain useful metrics on their performance in the space environment. Additional engineering testing was conducted by constructing hyperspectral sensors using sensors popular in science, technology, engineering and mathematics (STEM) contexts. Engineering and performance metrics of the payload containing the sensors was conducted; and performance of these sensors in relevant analogous environments. A selection of materials exhibiting spectral phenomenology in the red-edge portion of the spectrum was used to produce metrics on the performance of the sensors. It was found that low-cost cameras were able to distinguish between most minerals, although they required a wider spectral range to do so. Additionally, while Raspberry Pi cameras have been popular with scientific applications, a low-cost camera without a Bayer filter markedly improved spectral sensitivity. Consideration for space-environment testing was also trialed in additional experiments using high-altitude balloons to reach the near-space environment. The sensor payloads experienced conditions approximating the surface of Mars, and results were compared with Landsat 7, a heritage Earth sensing satellite, using a popular vegetation index. The selected Raspberry Pi cameras were able to provide useful results from near-space that could be compared with space imagery. Further testing incorporated comparative analysis of custom-built sensors using readily available Raspberry Pi and astronomy cameras, and results from Mastcam and Mastcam/z instruments currently on the surface of Mars. Two sensor designs were trialed in field settings possessing Mars-analogue materials, and a subset of these materials were analysed using a laboratory-grade spectro-radiometer. Results showed the Raspberry Pi multispectral camera would be best suited for broad-scale indications of mineralogy that could be targeted by the pushbroom sensor. This sensor was found to possess a narrower spectral range than the Mastcam and Mastcam/z but was sensitive to a greater number of bands within this range. The pushbroom sensor returned data on spectral phenomenology associated with attributes of Minerals of the type found on Mars. The actual performance of the payload in appropriate conditions was important to provide critical information used to risk reduce future designs. Additionally, the successful outcomes of the trials reduced risk for their application in a deep space environment. The SE and practical performance testing conducted in this thesis could be developed further to design, build and fly a hyperspectral sensor, sensitive to red-edge wavelengths, on a deep-space cubesat mission. Such a mission could be flown at reasonable cost yet return useful scientific and engineering data

    Mars infrared spectroscopy : from theory and the laboratory to field Observations : June 4-6, 2002, at the Lunar and Planetary Institute

    Get PDF
    Focuses on identification of critical gaps. The two most critical gaps are in coordinated end-to-end field testing and in libraries of spectroscopic data.Sponsored by Lunar and Planetary Institute, HoustonPARTIAL CONTENTS: Mars Exploration and Importance of Spectroscopic Observations--The Power of Combining Multiple Spectroscopic Techniques for Mineral Identification on Mars and the Necessity of Lab and Field Study of Analog Materials--Visible To Short Wavelength Infrared Spectroscopy On Rovers: Why We Need It On Mars and What We Need To Do On Earth--Spectral Feature Mapping and Analysis of Mars Global Surveyor Thermal Emission Spectrometer Data--A Coordinated Laboratory Program in Support of the Spectroscopic Experiments on Board Martian Missions--The Planetary Fourier Spectrometer (PFS) Onboard the European Mars Express Mission--Mapping Lithologic Units Exposed on The Summit of Mauna Kea Using AVIRIS Hyperspectral Reflectance Data--Status of Reflectance and Emissivity Models Relevant to Mars Studies--Thermal Infrared Field Spectroscopy--Martian Analogue Sample Characterization and Spectral Library Development at the Johnson Space Center--CRISM: Compact Reconnaissance Imaging Spectrometer for Mars on the Mars Reconnaissance Orbiter--Review of the ISM Instrument and Results--Methods of Spectral Analysis--Mid-Infrared Reflectance Spectroscopy: Where Are We, Where Are We Going, and Why?--Using Terrestrial Multispectral Images as a Proxy for Constraining New Thermal Infrared Data of Mars

    An Overview of Infrared Remote Sensing of Volcanic Activity

    Get PDF
    Volcanic activity consists of the transfer of heat from the interior of the Earth to the surface. The characteristics of the heat emitted relate directly to the geological processes underway and can be observed from space, using the thermal sensors present on many Earth-orbiting satellites. For over 50 years, scientists have utilised such sensors and are now able to determine the sort of volcanic activity being displayed without hazardous and costly field expeditions. This review will describe the theoretical basis of the discipline and then discuss the sensors available and the history of their use. Challenges and opportunities for future developments are then discussed

    Analysis of Hot Springs in Yellowstone National Park Using ASTER and AVIRIS Remote Sensing

    Get PDF
    Data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Airborne Visible/IR Image Spectrometer (AVIRIS) were used to characterize hot spring deposits in the Lower, Midway, and Upper Geyser Basins of Yellowstone National Park from the visible/near infrared (VNIR) to thermal infrared (TIR) wavelengths. Field observations of these basins provided the critical ground truth for comparison to the remote sensing results. Fourteen study sites were selected based on diversity in size, deposit type, and thermal activity. Field work included detailed site surveys such as land cover analysis, photography, Global Positioning System (GPS) data collection, radiometric analysis, and VNIR spectroscopy. Samples of hot spring deposits, geyser deposits, and soil were also collected. Analysis of ASTER provided broad scale characteristics of the hot springs and their deposits, including the identification of thermal anomalies. AVIRIS high spectral resolution short-wave infrared (SWIR) spectroscopy provided the ability to detect hydrothermally altered minerals as well as a calibration for the multispectral SWIR ASTER data. From the image analysis, differences in these basins were identified including the extent of thermal alteration, the location and abundance of alteration minerals, and a comparison of active, near-extinct, and extinct geysers. The activity level of each region was determined using a combination of the VNIR-SWIR-TIR spectral differences as well as the presence of elevated temperatures, detected by the TIR subsystem of ASTER. The results of this study can be applied to the exploration of extinct mineralized hydrothermal deposits on both Earth and Mars

    Utilizing Science and Technology to Enhance a Future Planetary Mission: Applications to Europa

    Get PDF
    abstract: A thorough understanding of Europa's geology through the synergy of science and technology, by combining geologic mapping with autonomous onboard processing methods, enhances the science potential of future outer solar system missions. Mapping outlines the current state of knowledge of Europa's surface and near sub-surface, indicates the prevalence of distinctive geologic features, and enables a uniform perspective of formation mechanisms responsible for generating those features. I have produced a global geologic map of Europa at 1:15 million scale and appraised formation scenarios with respect to conditions necessary to produce observed morphologies and variability of those conditions over Europa's visible geologic history. Mapping identifies areas of interest relevant for autonomous study; it serves as an index for change detection and classification and aids pre-encounter targeting. Therefore, determining the detectability of geophysical activity is essential. Activity is evident by the presence of volcanic plumes or outgassing, disrupted surface morphologies, or changes in morphology, color, temperature, or composition; these characteristics reflect important constraints on the interior dynamics and evolutions of planetary bodies. By adapting machine learning and data mining techniques to signatures of plumes, morphology, and spectra, I have successfully demonstrated autonomous rule-based response and detection, identification, and classification of known events and features on outer planetary bodies using the following methods: 1. Edge-detection, which identifies the planetary horizon and highlights features extending beyond the limb; 2. Spectral matching using a superpixel endmember detection algorithm that identifies mean spectral signatures; and 3. Scale invariant feature transforms combined with supervised classification, which examines brightness gradients throughout an image, highlights extreme gradient regions, and classifies those regions based on a manually selected library of features. I have demonstrated autonomous: detection of volcanic plumes or jets at Io, Enceladus, and several comets, correlation between spectral signatures and morphological appearances of Europa's individual tectonic features, detection of ≤94% of known transient events on multiple planetary bodies, and classification of similar geologic features. Applying these results to conditions expected for Europa enables a prediction of the potential for detection and recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa.Dissertation/ThesisPh.D. Geological Sciences 201

    Applications of Satellite Earth Observations section - NEODAAS: Providing satellite data for efficient research

    Get PDF
    The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data

    Satellite monitoring of harmful algal blooms (HABs) to protect the aquaculture industry

    Get PDF
    Harmful algal blooms (HABs) can cause sudden and considerable losses to fish farms, for example 500,000 salmon during one bloom in Shetland, and also present a threat to human health. Early warning allows the industry to take protective measures. PML's satellite monitoring of HABs is now funded by the Scottish aquaculture industry. The service involves processing EO ocean colour data from NASA and ESA in near-real time, and applying novel techniques for discriminating certain harmful blooms from harmless algae. Within the AQUA-USERS project we are extending this capability to further HAB species within several European countries

    Italian Report to the 43rd COSPAR Scientific Assembly

    Get PDF
    This document summarizes the last two years of space science activity in Italy and is the Italian Report to the 43rd COSPAR General Assembly. It is edited by INAF, the formal Italian national body that by the law supports the COSPAR activities, with the collaboration of ASI and the other stakeholders playing a major role in the Italian scientific space programs (INFN, CNR, INGV, etc.). In view of the appreciation received for the former editions, this year the Report has been formulated in a similar condensed form to give the relevant information in a snapshot, though providing a fully updated overview of the Italian research programs carried out from space. We apologize for any omission or misunderstanding. The Report is organized with the description of the scientific goals, technical requirements and actual realization of the space missions, enumerated following the COSPAR Scientific Commissions scheme: https://cosparhq.cnes.fr/scientific-structure/scientific-commissions/ Italy is today deeply involved in space science with a multifaceted activity. A remarkable sequence of scientific results over the past years and a considerable number of projects driven by Italian scientists, engineers and technologists position Italy as a frontrunner in space astrophysicsand space physics
    • …
    corecore