88 research outputs found

    Multi-authored monograph

    Get PDF
    Unmanned aerial vehicles. Perspectives. Management. Power supply : Multi-authored monograph / V. V. Holovenskiy, T. F. Shmelova,Y. M. Shmelev and oth.; Science Editor DSc. (Engineering), T. F. Shmelova. – Warsaw, 2019. – 100 p. - ISBN 978-83-66216-10-5.У монографії аналізуються можливі варіанти енергопостачання та управління безпілотними літальними апаратами. Також розглядається питання прийняття рішення оператором безпілотного літального апарату при управлінні у надзвичайних ситуаціях. Рекомендується для фахівців, аспірантів і студентів за спеціальностями 141 - «Електроенергетика, електротехніка та електромеханіка», 173 - «Авіоніка» та інших суміжних спеціальностей.The monograph analyzes the possible options for energy supply and control of unmanned aerial vehicles. Also, the issue of decision-making by the operator of an unmanned aerial vehicle in the management of emergencies is considered.

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    Інерціальні датчики для дистанційно пілотованих авіаційних систем

    Get PDF
    Робота публікується згідно наказу ректора від 29.12.2020 р. №580/од "Про розміщення кваліфікаційних робіт вищої освіти в репозиторії НАУ". Керівник дипломної роботи: доцент кафедри авіоніки Кожохіна Олена ВолодимирівнаInnovation of the project is the new use of the known technologies. The relevance of scientific work lies in the need for real time obtain the spatial position of aviation systems during the primary and secondary training of operators to manage the above systems. This will not only get the characteristics of each operator and identify the patterns of its activities, but continue to predict the emergence systematic errors inherent in a particular operator. And further to promote their reduction, which will significantly affect the process of training operators aviation systems and help increase the level of aviation security in general

    EVTOL concept design

    Get PDF
    This master thesis consists of a research and development project¿s documentation about Electrical Vertical Take off and Landing (EVTOL) technology. The main target is providing an investigation about this technology, reviewing its history since its origins to the future lines, understanding how it works by revising all the technical aspects such as the mechanical part, hardware components, software systems, structural stress design¿ In addition, a market study is carried out around this technology to come up with a first prototype. Based on a research for the applications and utilities that it can offer regarding the future problems that humanity is facing. Furthermore, this thesis documents the analog and digital methodologies that are being used throughout the entire creative process combining design and engineering workflows in order to achieve the proposed objectives. The project¿s value resides on the creative design aspect, therefore all the content is based from the pre-production design perspective. As the most technical part involving the product production such as the stress design aspect to select the right components, or quality validation process would be carried out on further stages by the engineers.Objectius de Desenvolupament Sostenible::13 - Acció per al ClimaObjectius de Desenvolupament Sostenible::15 - Vida d'Ecosistemes Terrestre

    Obstacle avoidance based-visual navigation for micro aerial vehicles

    Get PDF
    This paper describes an obstacle avoidance system for low-cost Unmanned Aerial Vehicles (UAVs) using vision as the principal source of information through the monocular onboard camera. For detecting obstacles, the proposed system compares the image obtained in real time from the UAV with a database of obstacles that must be avoided. In our proposal, we include the feature point detector Speeded Up Robust Features (SURF) for fast obstacle detection and a control law to avoid them. Furthermore, our research includes a path recovery algorithm. Our method is attractive for compact MAVs in which other sensors will not be implemented. The system was tested in real time on a Micro Aerial Vehicle (MAV), to detect and avoid obstacles in an unknown controlled environment; we compared our approach with related works.Peer ReviewedPostprint (published version

    Exploring the Technical Advances and Limits of Autonomous UAVs for Precise Agriculture in Constrained Environments

    Get PDF
    In the field of precise agriculture with autonomous unmanned aerial vehicles (UAVs), the utilization of drones holds significant potential to transform crop monitoring, management, and harvesting techniques. However, despite the numerous benefits of UAVs in smart farming, there are still several technical challenges that need to be addressed in order to render their widespread adoption possible, especially in constrained environments. This paper provides a study of the technical aspect and limitations of autonomous UAVs in precise agriculture applications for constrained environments

    Design of a quadcopter to work at high temperatures

    Get PDF
    The project develops the design of a quadcopter to work within industrial plants which can be found even at 80 degrees Celsius. These plants should be checked as a way of detecting faults or cracks to prevent other serious incidents that may arise. Both the whole building as well as industrial machinery, which are inside the plant, should be inspected without the need to wait until the infrastructure is fully cooled down. Both external mechanical defense to get close to surfaces, adapting to customer specifications, as well as mechanical and electronic components in the multicopter are designed. It shall support all the requested temperature at least 80 degrees.El proyecto desarrolla el diseño de un cuadricóptero para trabajar dentro de plantas industriales que se pueden encontrar hasta una temperatura de 80 grados. Estos edificios deben ser revisados continuamente como una forma de detectar fallas o grietas que puedan evitar otros incidentes más graves que pudieran surgir. Todo el edificio, así como la maquinaria industrial que están dentro de la planta, deben ser inspeccionados sin la necesidad de esperar hasta que la infraestructura está totalmente enfriada ...Ingeniería Industria

    Control Design and Performance Analysis for Autonomous Formation Flight Experiments

    Get PDF
    Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV’s) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor

    Preliminary Approach for UAV-Based Multi-Sensor Platforms for Reconnaissance and Surveillance applications

    Get PDF
    Context: Unmanned Aerial Vehicles (UAVs) equipped with remote sensing platforms have become increasingly popular due to their applications in aerial surveillance, environmental control, and disaster response. However, the limited flight range and on-board energy resources of UAVs pose significant challenges to their practical deployment and operating efficiency, which has led to the exploration of energy-efficient platforms for remote sensing. Method: This paper proposes a preliminary approach for UAV multi-sensor reconnaissance and surveillance platforms (MRSS) that target low energy consumption. The approach implemented four sensor modules controlled by one multi-functional integrated edge computer for control and data collection, which can be interchanged according to battery lifetime requirements. Results: The main contribution of this work was an analysis of the energy consumption behavior of sensor modules managed by an embedded system with edge computing capabilities as the central control unit. Conclusions: The high energy consumption associated with modules such as GEOINT leads to deep discharge in excess of 20 % DOD, resulting in a maximum battery degradation of 2,4 years
    corecore