170 research outputs found

    Performance Comparison of Static CMOS and Domino Logic Style in VLSI Design: A Review

    Get PDF
    Of late, there is a steep rise in the usage of handheld gadgets and high speed applications. VLSI designers often choose static CMOS logic style for low power applications. This logic style provides low power dissipation and is free from signal noise integrity issues. However, designs based on this logic style often are slow and cannot be used in high performance circuits. On the other hand designs based on Domino logic style yield high performance and occupy less area. Yet, they have more power dissipation compared to their static CMOS counterparts. As a practice, designers during circuit synthesis, mix more than one logic style judiciously to obtain the advantages of each logic style. Carefully designing a mixed static Domino CMOS circuit can tap the advantages of both static and Domino logic styles overcoming their own short comings

    Digital Circuit Design Using Floating Gate Transistors

    Get PDF
    Floating gate (flash) transistors are used exclusively for memory applications today. These applications include SD cards of various form factors, USB flash drives and SSDs. In this thesis, we explore the use of flash transistors to implement digital logic circuits. Since the threshold voltage of flash transistors can be modified at a fine granularity during programming, several advantages are obtained by our flash-based digital circuit design approach. For one, speed binning at the factory can be controlled with precision. Secondly, an IC can be re-programmed in the field, to negate effects such as aging, which has been a significant problem in recent times, particularly for mission-critical applications. Thirdly, unlike a regular MOSFET, which has one threshold voltage level, a flash transistor can have multiple threshold voltage levels. The benefit of having multiple threshold voltage levels in a flash transistor is that it allows the ability to encode more symbols in each device, unlike a regular MOSFET. This allows us to implement multi-valued logic functions natively. In this thesis, we evaluate different flash-based digital circuit design approaches and compare their performance with a traditional CMOS standard cell-based design approach. We begin by evaluating our design approach at the cell level to optimize the design’s delay, power energy and physical area characteristics. The flash-based approach is demonstrated to be better than the CMOS standard cell approach, for these performance metrics. Afterwards, we present the performance of our design approach at the block level. We describe a synthesis flow to decompose a circuit block into a network of interconnected flash-based circuit cells. We also describe techniques to optimize the resulting network of flash-based circuit cells using don’t cares. Our optimization approach distinguishes itself from other optimization techniques that use don’t cares, since it a) targets a flash-based design flow, b) optimizes clusters of logic nodes at once instead of one node at a time, c) attempts to reduce the number of cubes instead of reducing the number of literals in each cube and d) performs optimization on the post-technology mapped netlist which results in a direct improvement in result quality, as compared to pre-technology mapping logic optimization that is typically done in the literature. The resulting network characteristics (delay, power, energy and physical area) are presented. These results are compared with a standard cell-based realization of the same block (obtained using commercial tools) and we demonstrate significant improvements in all the design metrics. We also study flash-based FPGA designs (both static and dynamic), and present the tradeoff of delay, power dissipation and energy consumption of the various designs. Our work differs from previously proposed flash-based FPGAs, since we embed the flash transistors (which store the configuration bits) directly within the logic and interconnect fabrics. We also present a detailed description of how the programming of the configuration bits is accomplished, for all the proposed designs

    Digital Circuit Design Using Floating Gate Transistors

    Get PDF
    Floating gate (flash) transistors are used exclusively for memory applications today. These applications include SD cards of various form factors, USB flash drives and SSDs. In this thesis, we explore the use of flash transistors to implement digital logic circuits. Since the threshold voltage of flash transistors can be modified at a fine granularity during programming, several advantages are obtained by our flash-based digital circuit design approach. For one, speed binning at the factory can be controlled with precision. Secondly, an IC can be re-programmed in the field, to negate effects such as aging, which has been a significant problem in recent times, particularly for mission-critical applications. Thirdly, unlike a regular MOSFET, which has one threshold voltage level, a flash transistor can have multiple threshold voltage levels. The benefit of having multiple threshold voltage levels in a flash transistor is that it allows the ability to encode more symbols in each device, unlike a regular MOSFET. This allows us to implement multi-valued logic functions natively. In this thesis, we evaluate different flash-based digital circuit design approaches and compare their performance with a traditional CMOS standard cell-based design approach. We begin by evaluating our design approach at the cell level to optimize the design’s delay, power energy and physical area characteristics. The flash-based approach is demonstrated to be better than the CMOS standard cell approach, for these performance metrics. Afterwards, we present the performance of our design approach at the block level. We describe a synthesis flow to decompose a circuit block into a network of interconnected flash-based circuit cells. We also describe techniques to optimize the resulting network of flash-based circuit cells using don’t cares. Our optimization approach distinguishes itself from other optimization techniques that use don’t cares, since it a) targets a flash-based design flow, b) optimizes clusters of logic nodes at once instead of one node at a time, c) attempts to reduce the number of cubes instead of reducing the number of literals in each cube and d) performs optimization on the post-technology mapped netlist which results in a direct improvement in result quality, as compared to pre-technology mapping logic optimization that is typically done in the literature. The resulting network characteristics (delay, power, energy and physical area) are presented. These results are compared with a standard cell-based realization of the same block (obtained using commercial tools) and we demonstrate significant improvements in all the design metrics. We also study flash-based FPGA designs (both static and dynamic), and present the tradeoff of delay, power dissipation and energy consumption of the various designs. Our work differs from previously proposed flash-based FPGAs, since we embed the flash transistors (which store the configuration bits) directly within the logic and interconnect fabrics. We also present a detailed description of how the programming of the configuration bits is accomplished, for all the proposed designs

    Novel proteomic approaches to study gene regulatory interactions

    Get PDF

    Towards adaptive balanced computing (ABC) using reconfigurable functional caches (RFCs)

    Get PDF
    The general-purpose computing processor performs a wide range of functions. Although the performance of general-purpose processors has been steadily increasing, certain software technologies like multimedia and digital signal processing applications demand ever more computing power. Reconfigurable computing has emerged to combine the versatility of general-purpose processors with the customization ability of ASICs. The basic premise of reconfigurability is to provide better performance and higher computing density than fixed configuration processors. Most of the research in reconfigurable computing is dedicated to on-chip functional logic. If computing resources are adaptable to the computing requirement, the maximum performance can be achieved. To overcome the gap between processor and memory technology, the size of on-chip cache memory has been consistently increasing. The larger cache memory capacity, though beneficial in general, does not guarantee a higher performance for all the applications as they may not utilize all of the cache efficiently. To utilize on-chip resources effectively and to accelerate the performance of multimedia applications specifically, we propose a new architecture---Adaptive Balanced Computing (ABC). ABC uses dynamic resource configuration of on-chip cache memory by integrating Reconfigurable Functional Caches (RFC). RFC can work as a conventional cache or as a specialized computing unit when necessary. In order to convert a cache memory to a computing unit, we include additional logic to embed multi-bit output LUTs into the cache structure. We add the reconfigurability of cache memory to a conventional processor with minimal modification to the load/store microarchitecture and with minimal compiler assistance. ABC architecture utilizes resources more efficiently by reconfiguring the cache memory to computing units dynamically. The area penalty for this reconfiguration is about 50--60% of the memory cell cache array-only area with faster cache access time. In a base array cache (parallel decoding caches), the area penalty is 10--20% of the data array with 1--2% increase in the cache access time. However, we save 27% for FIR and 44% for DCT/IDCT in area with respect to memory cell array cache and about 80% for both applications with respect to base array cache if we were to implement all these units separately (such as ASICs). The simulations with multimedia and DSP applications (DCT/IDCT and FIR/IIR) show that the resource configuration with the RFC speedups ranging from 1.04X to 3.94X in overall applications and from 2.61X to 27.4X in the core computations. The simulations with various parameters indicate that the impact of reconfiguration can be minimized if an appropriate cache organization is selected

    Cross-Layer Optimization for Power-Efficient and Robust Digital Circuits and Systems

    Full text link
    With the increasing digital services demand, performance and power-efficiency become vital requirements for digital circuits and systems. However, the enabling CMOS technology scaling has been facing significant challenges of device uncertainties, such as process, voltage, and temperature variations. To ensure system reliability, worst-case corner assumptions are usually made in each design level. However, the over-pessimistic worst-case margin leads to unnecessary power waste and performance loss as high as 2.2x. Since optimizations are traditionally confined to each specific level, those safe margins can hardly be properly exploited. To tackle the challenge, it is therefore advised in this Ph.D. thesis to perform a cross-layer optimization for digital signal processing circuits and systems, to achieve a global balance of power consumption and output quality. To conclude, the traditional over-pessimistic worst-case approach leads to huge power waste. In contrast, the adaptive voltage scaling approach saves power (25% for the CORDIC application) by providing a just-needed supply voltage. The power saving is maximized (46% for CORDIC) when a more aggressive voltage over-scaling scheme is applied. These sparsely occurred circuit errors produced by aggressive voltage over-scaling are mitigated by higher level error resilient designs. For functions like FFT and CORDIC, smart error mitigation schemes were proposed to enhance reliability (soft-errors and timing-errors, respectively). Applications like Massive MIMO systems are robust against lower level errors, thanks to the intrinsically redundant antennas. This property makes it applicable to embrace digital hardware that trades quality for power savings.Comment: 190 page

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems
    • …
    corecore