131 research outputs found

    Identification of Finger Vein Images with Deep Neural Networks

    Get PDF
    To establish identification, individuals often utilize biometrics so that their identity cannot be exploited without their consent. Collecting biometric data is getting easier. Existing smartphones and other intelligent technologies can discreetly acquire biometric information. Authentication through finger vein imaging is a biometric identification technique based on a vein pattern visible under finger's skin. Veins are safeguarded by the epidermis and cannot be duplicated. This research focuses on the consistent characteristics of veins in fingers. We collected invariant characteristics from several cutting-edge deep learning techniques before classifying them using multiclass SVM. We used publicly available image datasets of finger veins for this purpose. Several assessment criteria and a comparison of different deep learning approaches were used to characterize the performance and efficiency of these models on the SDUMLA-HMT dataset.&nbsp

    A hybrid learning scheme towards authenticating hand-geometry using multi-modal features

    Get PDF
    Usage of hand geometry towards biometric-based authentication mechanism has been commercially practiced since last decade. However, there is a rising security problem being surfaced owing to the fluctuating features of hand-geometry during authentication mechanism. Review of existing research techniques exhibits the usage of singular features of hand-geometric along with sophisticated learning schemes where accuracy is accomplished at the higher cost of computational effort. Hence, the proposed study introduces a simplified analytical method which considers multi-modal features extracted from hand geometry which could further improve upon robust recognition system. For this purpose, the system considers implementing hybrid learning scheme using convolution neural network and Siamese algorithm where the former is used for feature extraction and latter is used for recognition of person on the basis of authenticated hand geometry. The main results show that proposed scheme offers 12.2% of improvement in accuracy compared to existing models exhibiting that with simpler amendment by inclusion of multi-modalities, accuracy can be significantly improve without computational burden

    Process of Fingerprint Authentication using Cancelable Biohashed Template

    Get PDF
    Template protection using cancelable biometrics prevents data loss and hacking stored templates, by providing considerable privacy and security. Hashing and salting techniques are used to build resilient systems. Salted password method is employed to protect passwords against different types of attacks namely brute-force attack, dictionary attack, rainbow table attacks. Salting claims that random data can be added to input of hash function to ensure unique output. Hashing salts are speed bumps in an attacker’s road to breach user’s data. Research proposes a contemporary two factor authenticator called Biohashing. Biohashing procedure is implemented by recapitulated inner product over a pseudo random number generator key, as well as fingerprint features that are a network of minutiae. Cancelable template authentication used in fingerprint-based sales counter accelerates payment process. Fingerhash is code produced after applying biohashing on fingerprint. Fingerhash is a binary string procured by choosing individual bit of sign depending on a preset threshold. Experiment is carried using benchmark FVC 2002 DB1 dataset. Authentication accuracy is found to be nearly 97\%. Results compared with state-of art approaches finds promising
    • …
    corecore