4,860 research outputs found

    Calibration and Sensitivity Analysis of a Stereo Vision-Based Driver Assistance System

    Get PDF
    Az http://intechweb.org/ alatti "Books" fül alatt kell rákeresni a "Stereo Vision" címre és az 1. fejezetre

    Homography-based ground plane detection using a single on-board camera

    Get PDF
    This study presents a robust method for ground plane detection in vision-based systems with a non-stationary camera. The proposed method is based on the reliable estimation of the homography between ground planes in successive images. This homography is computed using a feature matching approach, which in contrast to classical approaches to on-board motion estimation does not require explicit ego-motion calculation. As opposed to it, a novel homography calculation method based on a linear estimation framework is presented. This framework provides predictions of the ground plane transformation matrix that are dynamically updated with new measurements. The method is specially suited for challenging environments, in particular traffic scenarios, in which the information is scarce and the homography computed from the images is usually inaccurate or erroneous. The proposed estimation framework is able to remove erroneous measurements and to correct those that are inaccurate, hence producing a reliable homography estimate at each instant. It is based on the evaluation of the difference between the predicted and the observed transformations, measured according to the spectral norm of the associated matrix of differences. Moreover, an example is provided on how to use the information extracted from ground plane estimation to achieve object detection and tracking. The method has been successfully demonstrated for the detection of moving vehicles in traffic environments

    A high speed Tri-Vision system for automotive applications

    Get PDF
    Purpose: Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular, high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance. This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods: An experimental, high-speed tri-vision camera system intended for real-time driver eye-blink and saccade measurement was designed, developed, implemented and tested using prototype, ultra-high dynamic range, automotive-grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – sensation (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring). Results : The developed system can sustain frame rates of 59.8 Hz at the full stereovision resolution of 1280 × 480 but this can reach 750 Hz when a 10 k pixel Region of Interest (ROI) is used, with a maximum global shutter speed of 1/48000 s and a shutter efficiency of 99.7%. The data can be reliably transmitted uncompressed over standard copper Camera-Link® cables over 5 metres. The synchronisation error between the left and right stereo images is less than 100 ps and this has been verified both electrically and optically. Synchronisation is automatically established at boot-up and maintained during resolution changes. A third camera in the set can be configured independently. The dynamic range of the 10bit sensors exceeds 123 dB with a spectral sensitivity extending well into the infra-red range. Conclusion: The system was subjected to a comprehensive testing protocol, which confirms that the salient requirements for the driver monitoring application are adequately met and in some respects, exceeded. The synchronisation technique presented may also benefit several other automotive stereovision applications including near and far-field obstacle detection and collision avoidance, road condition monitoring and others.Partially funded by the EU FP6 through the IST-507231 SENSATION project.peer-reviewe

    Wrong Way Vehicle Detection in Single and Double Lane

    Get PDF
    Wrong-way driving is one of the primary causes of traffic jams and accidents globally. It is possible to identify vehicles going the wrong direction, which lessens accidents and traffic congestion. Surveillance footage has become an important source of data due to the accessibility of less priced cameras and the expanding use of real-time traffic management systems. In this paper, we propose a technique for automatically identifying automobiles moving against traffic. Our system uses the You Only Look Once (CNN) algorithm to recognize and track vehicles from video inputs and the centroid tracking method to determine each vehicle's orientation inside a given region of interest (ROI) in order to identify vehicles traveling in the wrong direction. It functions in three steps. The Deep sort tracking method is particularly good in detecting and tracking objects, and the centroid tracking technique can effectively monitor the direction of travel. Experiments with a variety of traffic films show that the suggested method can detect and identify wrong-way moving vehicles in a variety of lighting and weather scenarios. The interface of the system is quite simple and easy to use

    Sensor fusion in driving assistance systems

    Get PDF
    Mención Internacional en el título de doctorLa vida diaria en los países desarrollados y en vías de desarrollo depende en gran medida del transporte urbano y en carretera. Esta actividad supone un coste importante para sus usuarios activos y pasivos en términos de polución y accidentes, muy habitualmente debidos al factor humano. Los nuevos desarrollos en seguridad y asistencia a la conducción, llamados Advanced Driving Assistance Systems (ADAS), buscan mejorar la seguridad en el transporte, y a medio plazo, llegar a la conducción autónoma. Los ADAS, al igual que la conducción humana, están basados en sensores que proporcionan información acerca del entorno, y la fiabilidad de los sensores es crucial para las aplicaciones ADAS al igual que las capacidades sensoriales lo son para la conducción humana. Una de las formas de aumentar la fiabilidad de los sensores es el uso de la Fusión Sensorial, desarrollando nuevas estrategias para el modelado del entorno de conducción gracias al uso de diversos sensores, y obteniendo una información mejorada a partid de los datos disponibles. La presente tesis pretende ofrecer una solución novedosa para la detección y clasificación de obstáculos en aplicaciones de automoción, usando fusión vii sensorial con dos sensores ampliamente disponibles en el mercado: la cámara de espectro visible y el escáner láser. Cámaras y láseres son sensores comúnmente usados en la literatura científica, cada vez más accesibles y listos para ser empleados en aplicaciones reales. La solución propuesta permite la detección y clasificación de algunos de los obstáculos comúnmente presentes en la vía, como son ciclistas y peatones. En esta tesis se han explorado novedosos enfoques para la detección y clasificación, desde la clasificación empleando clusters de nubes de puntos obtenidas desde el escáner láser, hasta las técnicas de domain adaptation para la creación de bases de datos de imágenes sintéticas, pasando por la extracción inteligente de clusters y la detección y eliminación del suelo en nubes de puntos.Life in developed and developing countries is highly dependent on road and urban motor transport. This activity involves a high cost for its active and passive users in terms of pollution and accidents, which are largely attributable to the human factor. New developments in safety and driving assistance, called Advanced Driving Assistance Systems (ADAS), are intended to improve security in transportation, and, in the mid-term, lead to autonomous driving. ADAS, like the human driving, are based on sensors, which provide information about the environment, and sensors’ reliability is crucial for ADAS applications in the same way the sensing abilities are crucial for human driving. One of the ways to improve reliability for sensors is the use of Sensor Fusion, developing novel strategies for environment modeling with the help of several sensors and obtaining an enhanced information from the combination of the available data. The present thesis is intended to offer a novel solution for obstacle detection and classification in automotive applications using sensor fusion with two highly available sensors in the market: visible spectrum camera and laser scanner. Cameras and lasers are commonly used sensors in the scientific literature, increasingly affordable and ready to be deployed in real world applications. The solution proposed provides obstacle detection and classification for some obstacles commonly present in the road, such as pedestrians and bicycles. Novel approaches for detection and classification have been explored in this thesis, from point cloud clustering classification for laser scanner, to domain adaptation techniques for synthetic dataset creation, and including intelligent clustering extraction and ground detection and removal from point clouds.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Cristina Olaverri Monreal.- Secretario: Arturo de la Escalera Hueso.- Vocal: José Eugenio Naranjo Hernánde
    corecore