1,494 research outputs found

    Optical Dual Laser Based Sensor Denoising for OnlineMetal Sheet Flatness Measurement Using Hermite Interpolation

    Get PDF
    Flatness sensors are required for quality control of metal sheets obtained from steel coils by roller leveling and cutting systems. This article presents an innovative system for real-time robust surface estimation of flattened metal sheets composed of two line lasers and a conventional 2D camera. Laser plane triangulation is used for surface height retrieval along virtual surface fibers. The dual laser allows instantaneous robust and quick estimation of the fiber height derivatives. Hermite cubic interpolation along the fibers allows real-time surface estimation and high frequency noise removal. Noise sources are the vibrations induced in the sheet by its movements during the process and some mechanical events, such as cutting into separate pieces. The system is validated on synthetic surfaces that simulate the most critical noise sources and on real data obtained from the installation of the sensor in an actual steel mill. In the comparison with conventional filtering methods, we achieve at least a 41% of improvement in the accuracy of the surface reconstruction

    Water droplet machining and droplet impact mechanics

    Get PDF
    Water Droplet Machining (WDM) is a new manufacturing process, which uses a series of high-velocity, pure-water droplets to impact and erode metal workpieces, for the purpose of through-cutting, milling and surface profiling. The process is conducted within a vacuum environment to suppress aerodynamic drag and atomization of the waterjet and droplet stream. This preserves droplet momentum and allows for a more efficient transfer of energy between the water and workpiece, than in standard atmospheric pressure. As a new manufacturing technique, parameter-specific details and characteristics of this process are absent from the scientific literature. Furthermore, the erosion mechanisms involved in droplet-solid interactions are not well-understood. Therefore, this research aims to elucidate the capabilities of WDM, and uncover the mechanics involved in droplet impact. This is done by investigating the force imparted by liquid droplets across a wide range of impact parameters, where a novel force model is developed for inertial-dominated impacts. A force comparison is made between continuous jet and droplet train impacts, where the findings show that a droplet train has a higher erosive potential than its continuous jet counterpart, owing to the higher forces exerted by individual droplets. In addition, the stress state inside of a material subject to a Hertzian contact, which is connected to this research as it emulates the axisymmetric nature of a droplet-like loading, is explored using integrated photoelasticity. Finally, the process parameters and erosion characteristics of WDM are investigated using a custom-fabricated machine, where a range of waterjet-types (and droplet trains) are produced. The industrial efficacy of this process is evaluated by manufacturing a diverse array of engineering materials

    Effect of Surface Roughness on Wind Turbine Performance

    Get PDF
    Wind farm operators observe production deficits as machines age. Quantifying deterioration on individual components is difficult, but one potential explanation is accumulation of blade surface roughness. Historically, wind turbine airfoils were designed for lift to be insensitive to roughness by simulating roughness with trip strips. However, roughness was still shown to negatively affect performance. Furthermore, experiments illustrated distributed roughness is not properly simulated by trip strips. To understand how real-world roughness affects performance, field measurements of turbine-blade roughness were made and simulated on a NACA 63_(3)-418 airfoil in a wind tunnel. Insect roughness and paint chips were characterized and recreated as distributed roughness and a forward-facing step. Distributed roughness was tested in three heights and five density configurations. The model chord Reynolds number was varied between 0:8 to 4:8 × 10^(6). Measurements of lift, drag, pitching moment, and boundary-layer transition were completed. Results indicate minimal effect from paint-chip roughness. As distributed roughness height and density increase, lift-curve slope, maximum lift, and lift-to-drag ratio decrease. As Reynolds number increases, bypass transition occurs earlier. The critical roughness Reynolds number varies between 178 to 318, within the historical range. Little sensitivity to pressure gradient is observed. At a chord Reynolds number of 3:2×10^(6), the maximum lift-to-drag ratio decreases 40% for 140 µm roughness, corresponding to a 2.3% loss in annual energy production. Simulated performance loss compares well to measured performance loss on an in-service wind turbine

    The potential of flexible micro pillars to investigate near wall flow

    Get PDF
    The potential of flexible micro pillars for measuring near wall flow phenom- ena was theoretically and experimentally investigated. The bending of the micro pillars is a measure for the local wall shear stress (WSS) or a visualisa- tion of near wall flow phenomena. Polydimethylsiloxane (PDMS) was chosen as material for the sensor. Within the thesis the experimental work with the shear stress sensor mainly has the focus on the transition to turbulence. Closely connected are improvements of the measurement techniques. The transition is thereby investigated qualitatively and quantitatively. Another huge part of the thesis was the improvement of the reliability of the manu- facturing process of the micro pillars. For this purpose new manufacturing methods for single pillars and pillar arrays have been tested. Further on, dif- ferent detection methods for capturing the bending of the pillar were tested, too. The measurements of the transitional flow were performed at flat plate boundary layer in an oil channel. Ondina 913 was used as test fluid. The physical properties of the PDMS changed dramatically while longer exposed to Ondina 913. Hence, it was unfeasible to receive reproducible quantita- tive results. Better results were achieved if the pillars are used as flexible micro tufts revealing the flow and WSS topology directly at the wall quali- tatively. With the pillar sensor it was possible to detect turbulent spots in the transitional state of the flat plate boundary layer. Furthermore, coherent structures and their typical sign in the viscous sublayer could be identified and the occurrence of critical points and back flow could be experimentally verified

    Response of Electrified Micro-Jets to Electrohydrodynamic Perturbations

    Get PDF
    The breakup of liquid jets is ubiquitous with rich underpinning physics and widespread applications. The natural breakup of liquid jets originates from small ambient perturbations, which can grow exponentially until the amplitude as large as the jet radius is reached. For unelectrified inviscid jets, surface energy analysis shows that only the axisymmetric perturbation is possibly unstable, and this mode is referred as varicose instability. For electrified jets, the presence of surface charge enables additional unstable modes, among which the most common one is the whipping (or kink) instability that bends and stretches the charged jet that is responsible for the phenomena of electrospinning. A closer examination of the two instabilities suggests that due to mass conservation, the uneven jet stretching from whipping may translate into radial perturbations and trigger varicose instabilities. Although the varicose and whipping instabilities of electrified micro-jets have both been extensively studied separately, there is little attention paid to the combined effect of these two, which may lead to new jet breakup phenomena. This dissertation investigates the dynamic response of electrified jets under transverse electrohydrodynamic (EHD) perturbations which were introduced by exciters driven by alternating voltage of sweeping frequency. Three different jetting mechanisms are used to generate jets with various ranges of jet diameters: ~150 micrometer inertial jets from liquid pressurized through a small orifice, ~50 micrometer flow focused jets, and ~20 micrometer electrified Taylor-cone jets. The transverse perturbations enable systematic triggering of varicose and whipping instabilities, and consequently a wide range of remarkable phenomena emerge. For inertial jets with zero or low charge levels, only varicose instability is observable due to suppressed whipping instability. At modest charge levels, inertia jets can respond to the fundamental perturbation frequency as well as the second harmonic of the perturbation frequency. Highly charged jets such as fine jets generated from Taylor cones exhibit distinct behavior for different perturbation wavenumber x. Typical behavior include: whipping jets with superimposed varicose instability at small x, jet bifurcation from crossover of whipping and varicose instabilities at x~0.5, Coulombic fission owing to the surge of surface charge density as the slender liquid segments recover spherical shapes at x~0.7, and simple varicose mode near wave numbers of unity. The phenomena observed in this work may be explained by a linear model and rationalized by the phase diagram in the space of wave number and dimensionless charge levels. The experimental apparatus used in this dissertation is simple, non-intrusive, and scalable to a linear array of jets. The rich phenomena combined with the versatile apparatus may spawn new research directions such as regulated electrospinning, generating strictly monodisperse micro/nano droplets, and manufacturing of non-spherical particles from drying droplets that undergo controlled Coulombic fissions

    A study of magnetic storms and auroras

    Get PDF
    New notations for magnetic disturbance fields are proposed, based on the theoretical consideration of the electric current systems by which they are produced. A typical magnetic storm begins suddenly when the onrush of the front of the solar gas is halted by the earth's magnetic field. This effect (DCF field) is most markedly observed as a sudden increase of the horizontal component of the earth's field (the storm sudden commencement, abbreviated to ssc)— like a step function. In many cases, however, the change of the field during the ssc is more complicated, and different at different places. Such a complexity superposed on the simple increase (DCF) is ascribed to a complicated current system generated in the polar ionosphere (DP current). It is found that the changes of electromagnetic conditions in the polar regions are communicated, without delay, to lower latitudes, even down to the equatorial regions. It is inferred that the equatorial jet is affected by such a change and produces the abnormal enhancement of ssc along the magnetic dip equator. From the extensive analysis of several magnetic storms that occurred during the IGY and IGC, it is suggested that the capture of the solar particles in the outer geomagnetic field occurs when irregularities (containing tangled magnetic fields and high energy protons) embedded in the solar stream, impinge on the earth.. Thus the development of a magnetic storm depends on the distribution of such irregularities in the stream. The motions and resulting currents and magnetic fields of such "trapped" solar particles are studied in detail for a special model. It is inferred that a large decrease (DR field) must follow the initial increase; it is ascribed to the ring current produced by such motion of solar protons oi energy of order 500 Kev. It is proposed that during the storm there appears a transient 'storm-time1 belt well outside the outer radiation belt. It is predicted that the earth's magnetic field is reversed in limited regions when the ring current is appreciably enhanced. This involves the formation of neutral lines there. These may be of two kinds, called X lines or 0 lines according as they are crossed or encircled by magnetic lines of force. These may be entirely separated or may be joined to form a loop, called an OX loop. It is shown that one of them, the X line, which is connected with the auroral ionosphere by the lines of force, could be the proximate source of th<e particles that produce the aurora polaris. By postulating the existence of such X-type neutral lines at about 6 earth radii, an explanation is obtained of the detailed morphology of the aurora. This includes the auroral zones and their changes, the nighttime peak occurrence of auroras, their thin ribbon-like structure and their multiplicity, their diffuse and active forms and the transition between them (break-up) the required electron and proton flux, and the ray and wavy structures. Among the most important phenomena associated with the sudden change of the aurora from the diffuse to the active form are the simultaneous appearance of the auroral electrojet and the resulting polar magnetic disturbances (DP sub-storms). Several typical DP sub-storms are studied in detail. It is concluded that a westward auroral jet is produced by a southward electric field. It is shown that an instability of the sheetbeam issuing from along the X-type neutral line can produce a southward electric field of the required intensity. The southward electric field produces an eastward motion of the electrons in the ionosphere. This may be identified with the eastward motion of an active aurora and with the westward auroral electrojet. Besides such large changes- of the field, there often appear various quasi-sinusoidal changes of the field, much less intense. They are supposed to be hydromagnetic waves, some of which are generated in the outer atmosphere and propagated through the ionosphere, where a certain amount of their energy is dissipated. It is concluded however that Such a dissipation is not sufficient to produce any appreciable heating of the ionosphere.Chapter I The electromagnetic environment of the earth : The solar system in the Galaxy ; The sun and the interplanetary space ; The outer atmosphere, the Van Allen radiation belts and the ionosphere ; The earth’s permanent magnetic field ; Introduction to geomagnetic storms and auroras ; The analysis of the earth’s magnetic field – Chapter II The sudden commencement of magnetic storms : Introduction ; The studies of Sc and Si at individual observations ; A theory of the Sc of magnetic storms ; Transmission of the Sc from the inner boundary of the solar steam to the earth’s surface ; The sudden commencement DP currents – Chapter III The ring current and the van allen radiation belts : Introduction ; The motion of charged particles in the earth’s dipole magnetic field ; Electric currents in an ionized gas (general formulae) ; The steady ring current in a dipole field ; The magnetic field produced by the ring current ; The main phase of magnetic storms ; The ring current belt ; Discussion – Chapter IV A neural line discharge theory of the aurora Polaris : Introduction ; The formation of a neutral line ; The motions of charged particles close to a neutral line ; The auroral zones ; Particle injection associated with arcs ; Rayed arcs ; Instabilities of auroras – Chapter V Polar magnetic disturbances : Introduction ; The polar magnetic disturbances of 5 to 6 December 1958 (College, Alaska) ; The polar magnetic disturbances of 29 September 1957 (Worldwide) ; The polar magnetic disturbances of 23 September 1957 ; The eastward motion of auroras and the electric field of polar magnetic disturbances ; The origin of the electric field of polarmagnetic disturbances – Chapter VI Hydromagnetic waves in the ionosphere : Introduction ; Ionospheric heating by hydromagnetic waves connected with geomagnetic micropulsations – Acknowledgements -- ReferencesYe

    Out-of-plane fiber waviness in composite materials: origins, detection and mechanical evaluation

    Get PDF
    Out-of-plane fiber waviness, also referred to as wrinkling, is considered one of the most significant effects that occur in composite materials. It significantly affects mechanical properties, such as stiffness, strength and fatigue and, therefore, dramatically reduces the load carrying capacity of the material. Fiber waviness is inherent to various manufacturing processes of fiber-reinforced composite parts. They cannot be completely avoided and thus have to be tolerated and considered as an integral part of the structure. Because of this influenceable but in many cases unavoidable nature of fiber waviness, it might be more appropriate to consider fiber waviness as effects or features rather than defects. Hence, it is important to understand the impact of different process parameters on the formation of fiber waviness in order to reduce or, in the best case, completely avoid them as early as possible in the product and process development phases. Mostly depending on the chosen geometry of the part and the specific manufacturing process used, different types of fiber waviness result. Fiber-reinforced composite materials allow for a significant mass reduction due to the comparably low density (c.f. 4-5 times less than steel) and, in addition, fibers can be aligned in accordance with the load paths. This possibility of alignment allows the fibers to be placed at the exact position where they are needed to provide the component with the required stiffness and strength. However, this can lead to a load path-optimized composite structure, which is not necessarily easy to produce and free of defects. The placement of the fibers or semi-finished textile products is still often carried out by hand-lay-up, especially in the aviation industry. This allows a diverse draping of the unidirectional (UD) layers, woven textiles or non-crimped fabrics (NCF) onto the production tool. However, manufacturing effects such as fiber waviness, porosity, delamination and distortion cannot be completely avoided. The increased demand for composite components and their production process stability for the aviation and automotive industries requires a transition to at least partially automated manufacturing processes. Those systems come with a higher deposition rate and ensure reproducible quality, but also imply production effects, e.g. fiber waviness. This necessitates a sophisticated understanding of those implicit effects on the mechanical properties of the manufactured structure. The decision as to whether these unwanted irregularities are considered as manufacturing features (effects), or as defects, depends on the size, number and location in the component. Those allowance limits depend on the strength and stiffness reserve at the location of the feature, as well as on functional requirements, e.g. water tightness. The assessment of manufacturing effects further depends on the industry. In the aviation industry, the allowance limits for defects are very restricted, while in the automotive industry the need for short cycle times leads to a trade-off between robust processes and tolerated manufacturing imperfections. To this point, there is still no generally accepted approach to quantitatively support accept/reject/repair-decisions and make a consistent assessment of wavy layers in composites. If the effect is termed to be a defect, typically a deviation from design must be requested in the aviation industry and an individual decision must be made on "use as is", repair or reject entirely. In some cases, experiments on representative test samples are performed at the subcomponent-level on a statistical basis. However, this is both time consuming and cost intensive. It is necessary to strive for a fiber-oriented and in particular a manufacturing-oriented design and construction of composite components. Towards this goal, design and production engineers aim to expand the permissible margin of safety by assessing the effect on stiffness and strength of those production effects, i.e. fiber waviness, porosity, delamination etc. Additionally, they aim to reduce or, in the best case, avoid them on the process side, increasingly with the help of finite element based process simulations. In this thesis, numerous mechanisms of wrinkling were analyzed, leading to several recommendations to prevent wrinkle formation not only during composite processing, but also at an earlier design stage, where generally several influencing factors are defined. Based on that, an overview of typically occurring wave shapes is presented and a classification scheme based on ten characteristic features is suggested for categorization purposes. The assessment of out-of-plane fiber waviness in composite materials is strongly dependent on the accuracy of detection and quantification of the wave parameters such as amplitude, wavelength and position in the laminate. In the aviation industry, ultrasonic testing (UT) is the preferred method for the evaluation of composite materials. The evaluation of the ultrasound signal from different manufacturing effects is difficult and it often cannot be clearly determined whether there are actually wavy regions in the laminate or not. In this thesis, different non-destructive testing (NDT) methods, such as infrared thermography (IRT), digital shearography, eddy current testing (ET) and X-ray computed tomography (CT) have been used to assess their potential for the detection and characterization of embedded out-of-plane fiber waviness in composite materials. These methods were applied on test plates with artificially embedded waviness with varying amplitudes, wavelengths and positions in the laminate and evaluated with respect to their ability of detecting the wrinkle morphology. The experimental non-destructive procedures of infrared thermography and digital shearography were simulated using the Finite Element Method (FEM) to gain a deeper understanding on the influence of fiber waviness on the measured results. To understand the complex failure behaviour of composite materials containing out-of-plane fiber waviness under compressive and tensile loading, numerous experimental tests have been carried out. Digital image correlation (DIC), passive thermography (IRT) and acoustic emission (AE) test methods have been used to investigate damage initiation and propagation on specimen level. In addition to that, an extensive material characterization on planar specimens was also performed. Composite materials exposed to harsh environmental conditions, i.e. hot-wet, show considerably reduced mechanical properties, governed by a degrading matrix. To investigate the effect of fiber waviness on the mechanical properties at both room temperature and after 12 months hot-wet conditioning at 70°C and 85% relative humidity, mechanical tests (compressive and tensile loading) were conducted. The basic strategies for the assessment of fiber waviness are briefly described. In engineering practice several approaches are used, i.e. empirical, generic, and semi-empirical. These include experimentally obtained knockdown factors, simplified simulations or extensive testing on subcomponent level, both experimentally and numerically. A developed micromechanical model is implemented in a MATLAB GUI to determine the effective elastic properties as well as the resulting complex stress state of uniform and graded fiber waviness. The well-established Puck failure criterion was implemented and applied on the calculated stresses to predict local ply failure and determine the strength of wavy plies. The mechanical behavior of out-of-plane fiber waviness is investigated for both unidirectional and quasi-isotropic laminates by numerically simulating damage initiation and propagation. A nonlinear material model was implemented in ABAQUS/Explicit as a material user-subroutine, which is able to capture the material behavior including shear nonlinearities, failure initiation and propagation in unidirectional laminates reasonably accurate

    Assessing the Axis 221 Camera Onboard the UTSI Piper Navajo to Capture Manatee Images

    Get PDF
    Researchers in Florida are attempting to improve the methods of collecting data for manatee population surveys. Standard line-transect survey methods are not appropriate for the narrow warm-water aggregations sites where these surveys are to take place. Researchers hope to obtain population estimates at three warm-water manatee refuge sites: TECO (Tampa Electric Company), FPL (Florida Power Plant, Cape Canaveral), and the Three Sisters Sanctuary (Crystal River) The purpose of this study was to determine whether or not the Axis 221 Camera onboard the UTSI Piper Navajo is adequate for obtaining suitable images for use in population estimates. In order for the system to be determined useful, the flight tests must show that the following criteria is met. First, the video system must be capable of capturing images with sufficient quality to distinguish and count manatees while flying within the given parameters. Second, the flight team and equipment must be capable of flying the necessary flight paths while capturing the required area. Third, the aircraft and team must be capable of flying the desired flight paths in a timely manner, to accommodate for manatee behavior and time at surface. And finally, the system must be capable of capturing surface temperature. The last two criteria (timeliness and surface temperature) are necessary information for researchers to determine a detection probability. The data collected during two local flight tests was analyzed to assess the video system and flight team. Flight test one collected video of a parking lot and runway using objects of known size to estimate video quality. Surface temperature was also collected. Flight test two collected video over a waterway to assess the cameras field of view and the timeliness of the mission. Results indicated the flight team and video system will be sufficient for a future Florida mission at an altitude of 300 meters (about 1,000 ft)

    Realistic Hair Simulation: Animation and Rendering

    Get PDF
    International audienceThe last five years have seen a profusion of innovative solutions to one of the most challenging tasks in character synthesis: hair simulation. This class covers both recent and novel research ideas in hair animation and rendering, and presents time tested industrial practices that resulted in spectacular imagery
    • …
    corecore