78 research outputs found

    Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans

    Get PDF
    The combination of physical sensors and computational models to provide additional information about system states, inputs and/or parameters, in what is known as virtual sensing, is becoming increasingly popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors. While, in many cases, control-oriented models, which are generally simple, are the best choice, multibody models, which can be much more detailed, may be better suited to some applications, such as during the design stage of a new product

    Model-based Cooperative Acoustic Navigation and Parameter Identification for Underactuated Underwater Vehicles

    Get PDF
    This thesis reports novel theoretical and experimental results addressing two increasingly important problems in underwater robotics: model-based cooperative acoustic navigation for underwater vehicles (UVs) lacking a Doppler velocity log (DVL) and dynamic-model parameter estimation for underactuated UVs, such as the now-ubiquitous class of torpedo-shaped UVs. This thesis reports an extension of a method to identify simultaneously UV dynamical plant model parameters (parameters for critical terms such as mass, added mass, hydrodynamic drag, and buoyancy) and control-actuator parameters (control-surface models and thruster model) in 6 degrees of freedom (DOF) to tolerate simulated sensor measurement noise representative of representative of real-world sensor data, as well as extensive numerical simulations to evaluate the sensitivity of the approach to sensor noise. The current state-of-the-art in one-way travel time (OWTT) combined acoustic communication and navigation (cooperative acoustic navigation) is to utilize purely kinematic, constant-velocity plant process models together with an on-board bottom-lock DVL to provide frequent, high-accuracy velocity corrections. However, DVLs are expensive, power consumers, physically large, and limited to acoustic bottom-lock range, which restricts their use to O(10-100m) above the sea floor or beneath surface ice. Simulation and experimental results reported herein indicate the submerged UV position estimate from cooperative acoustic navigation with a kinematic model is poor and even unstable in the absence of DVL velocity observations. These simulation and experimental results also show that cooperative acoustic navigation with a dynamic plant model performs well without a DVL and outperforms DVL-based dead reckoning, at least in the situation presented herein where the magnitude of the ambient water-current velocity is small. The performance of the UV dynamic model, i.e., its ability to predict the vehicle's state, depends primarily on the accuracy of the model structure and model parameters. Accurate estimates of these parameters are also required for model-based control, fault detection, and simulation of UV. While the general form of dynamical plant models for UVs is well understood, accurate values for dynamic-model parameters are impossible to determine analytically, are not provided by UV manufacturers, and can only be determined experimentally. Moreover, oceanographic UVs are subject to frequent changes in physical configuration, including changes in ballasting and trim, on-board equipment, and instrumentation (both external and internal), which may significantly affect the vehicle dynamics. Plant-model parameter estimation is generally more difficult for underactuated, torpedo-shaped UVs than for fully actuated UVs with thrusters because: 1) the reduced actuation available on underactuated UV limits the plant excitation that can be induced from the control inputs, and 2) torpedo-shaped vehicles are often actuated with control surfaces (e.g., fins, wings, rudders, etc), which are difficult to characterize independently of the plant model parameters. For these reasons, we seek an approach to parameter estimation for underactuated UVs in 6 DOF that simultaneously estimates plant and actuator parameters and can be performed routinely in the field with minimal time and effort by the vehicle operator. The goals of this thesis are to advance the state-of-the-art of (1) model-based state estimation for cooperative acoustic navigation of UVs and (2) dynamic plant-model parameter identification for underactuated UVs. The first goal is addressed with the evaluation of a dynamic UV plant model in cooperative acoustic navigation and a comparative analysis of the dynamic UV model and kinematic UV model without a DVL. The second goal is addressed in a collaborative effort comprising: (1) the development of the nullspace-based least squares (NBLS) algorithm for underactuated UV plant-parameter and actuator-parameter estimation in 6 DOF, and (2) the extension of an AID algorithm, and corresponding stability proof, to estimate simultaneously plant-model and actuator parameters for underactuated UVs with diagonal mass and drag matrices in 6 DOF with realistic sensor measurement noise. These capabilities were verified by in situ vehicle experiments with the JHU Iver3 AUV and by simulation studies

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Enhanced Subsea Acoustically Aided Inertial Navigation

    Get PDF

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    モーションコントロールへの応用のためのカルマンフィルタに関する研究 : デュアルレート・時間遅延補償・パラメータ推定

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 堀 洋一, 東京大学教授 大崎 博之, 東京大学教授 古関 隆章, 東京大学教授 久保田 孝, 東京大学客員准教授 坂井 真一郎, 東京大学准教授 藤本 博志University of Tokyo(東京大学

    Fault Diagnosis and Fault Handling for Autonomous Aircraft

    Get PDF
    corecore