12,892 research outputs found

    Analysis of pattern recognition techniques for in-air signature biometrics

    Full text link
    As a result of advances in mobile technology, new services which benefit from the ubiquity of these devices are appearing. Some of these services require the identification of the subject since they may access private user information. In this paper, we propose to identify each user by drawing his/her handwritten signature in the air (in-airsignature). In order to assess the feasibility of an in-airsignature as a biometric feature, we have analysed the performance of several well-known patternrecognitiontechniques—Hidden Markov Models, Bayes classifiers and dynamic time warping—to cope with this problem. Each technique has been tested in the identification of the signatures of 96 individuals. Furthermore, the robustness of each method against spoofing attacks has also been analysed using six impostors who attempted to emulate every signature. The best results in both experiments have been reached by using a technique based on dynamic time warping which carries out the recognition by calculating distances to an average template extracted from several training instances. Finally, a permanence analysis has been carried out in order to assess the stability of in-airsignature over time

    Three-dimensional face recognition: An Eigensurface approach

    Get PDF
    We evaluate a new approach to face recognition using a variety of surface representations of three-dimensional facial structure. Applying principal component analysis (PCA), we show that high levels of recognition accuracy can be achieved on a large database of 3D face models, captured under conditions that present typical difficulties to more conventional two-dimensional approaches. Applying a ran-c of image processing, techniques we identify the most effective surface representation for use in such application areas as security surveillance, data compression and archive searching

    Detecting agricultural to urban land use change from multi-temporal MSS digital data

    Get PDF
    Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale

    On the kinematic signature of a central Galactic bar in observed star samples

    Full text link
    A quasi self-consistent model for a barred structure in the central regions of our Galaxy is used to calculate the signature of such a triaxial structure on the kinematical properties of star samples. We argue that, due to the presence of a velocity dispersion, such effects are much harder to detect in the stellar component than in the gas. It might be almost impossible to detect stellar kinematical evidence for a bar using only l-v diagrams, if there is no a priori knowledge of the potential. Therefore, we propose some test parameters that can easily be applied to observed star samples, and that also incorporate distances or proper motions. We discus the diagnostic power of these tests as a function of the sample size and the bar strength. We conclude that about 1000 stars would be necessary to diagnose triaxiality with some statistical confidence.Comment: 9 pages + 8 PS figures, uses aas2pp4.sty. Accepted by Ap

    3D Face Recognition: Feature Extraction Based on Directional Signatures from Range Data and Disparity Maps

    Get PDF
    In this paper, the author presents a work on i) range data and ii) stereo-vision system based disparity map profiling that are used as signatures for 3D face recognition. The signatures capture the intensity variations along a line at sample points on a face in any particular direction. The directional signatures and some of their combinations are compared to study the variability in recognition performances. Two 3D face image datasets namely, a local student database captured with a stereo vision system and the FRGC v1 range dataset are used for performance evaluation

    Dynamic user authentication based on mouse movements curves

    Get PDF
    In this paper we describe a behavioural biometric approach to authenticate users dynamically based on mouse movements only and using regular mouse devices. Unlike most of the previous approaches in this domain, we focus here on the properties of the curves generated from the consecutive mouse positions during typical mouse movements. Our underlying hypothesis is that these curves have enough discriminative information to recognize users. We conducted an experiment to test and validate our model in which ten participants are involved. Back propagation neural network is used as a classifier. Our experimental results show that behavioural information with discriminating features is revealed during normal mouse usage, which can be employed for user modeling for various reasons, such as information assets protection

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm
    corecore