184 research outputs found

    Surface EMG and muscle fatigue: multi-channel approaches to the study of myoelectric manifestations of muscle fatigue

    Get PDF
    In a broad view, fatigue is used to indicate a degree of weariness. On a muscular level, fatigue posits the reduced capacity of muscle fibres to produce force, even in the presence of motor neuron excitation via either spinal mechanisms or electric pulses applied externally. Prior to decreased force, when sustaining physically demanding tasks, alterations in the muscle electrical properties take place. These alterations, termed myoelectric manifestation of fatigue, can be assessed non-invasively with a pair of surface electrodes positioned appropriately on the target muscle; traditional approach. A relatively more recent approach consists of the use of multiple electrodes. This multi-channel approach provides access to a set of physiologically relevant variables on the global muscle level or on the level of single motor units, opening new fronts for the study of muscle fatigue; it allows for: (i) a more precise quantification of the propagation velocity, a physiological variable of marked interest to the study of fatigue; (ii) the assessment of regional, myoelectric manifestations of fatigue; (iii) the analysis of single motor units, with the possibility to obtain information about motor unit control and fibre membrane changes. This review provides a methodological account on the multi-channel approach for the study of myoelectric manifestation of fatigue and on the experimental conditions to which it applies, as well as examples of their current applications

    Adaptive real-time identification of motor unit discharges from non-stationary high-density surface electromyographic signals

    Get PDF
    Objective. Estimation of the discharge pattern of motor units by electromyography (EMG) decomposition has been applied for neurophysiologic investigations, clinical diagnosis, and human-machine interfacing. However, most of the methods for EMG decomposition are currently applied offline. Here, we propose an approach for high-density surface EMG decomposition in real-time. Methods. A real-time decomposition scheme including two sessions, offline training and online decomposition, is proposed based on the convolutional kernel compensation algorithm. The estimation parameters, separation vectors and the thresholds for spike extraction, are first computed during offline training, and then they are directly applied to estimate motor unit spike trains (MUSTs) during the online decomposition. The estimation parameters are updated with the identification of new discharges to adapt to non-stationary conditions. The decomposition accuracy was validated on simulated EMG signals by convolving synthetic MUSTs with motor unit action potentials (MUAPs). Moreover, the accuracy of the online decomposition was assessed from experimental signals recorded from forearm muscles using a signal-based performance metrics (pulse-to-noise ratio, PNR). Main results. The proposed algorithm yielded a high decomposition accuracy and robustness to non-stationary conditions. The accuracy of MUSTs identified from simulated EMG signals was > 80% for most conditions. From experimental EMG signals, on average, 12±2 MUSTs were identified from each electrode grid with PNR of 25.0±1.8 dB, corresponding to an estimated decomposition accuracy > 75%. Conclusion and Significance. These results indicate the feasibility of real-time identification of motor unit activities non-invasively during variable force contractions, extending the potential applications of high-density EMG as a neural interface

    The Accurate Assessment of Muscle Excitation Requires the Detection of Multiple Surface Electromyograms

    Get PDF
    When sampling electromyograms (EMGs) with one pair of electrodes, it seems implicitly assumed the detected signal reflects the net muscle excitation. However, this assumption is discredited by observations of local muscle excitation. Therefore, we hypothesize that the accurate assessment of muscle excitation requires multiple EMG detection and consideration of electrode-fiber alignment. We advise prudence when drawing inferences from individually collected EMGs

    Incorporating Feedback from Multiple Sensory Modalities Enhances Brain–Machine Interface Control

    Get PDF
    The brain typically uses a rich supply of feedback from multiple sensory modalities to control movement in healthy individuals. In many individuals, these afferent pathways, as well as their efferent counterparts, are compromised by disease or injury resulting in significant impairments and reduced quality of life. Brain–machine interfaces (BMIs) offer the promise of recovered functionality to these individuals by allowing them to control a device using their thoughts. Most current BMI implementations use visual feedback for closed-loop control; however, it has been suggested that the inclusion of additional feedback modalities may lead to improvements in control. We demonstrate for the first time that kinesthetic feedback can be used together with vision to significantly improve control of a cursor driven by neural activity of the primary motor cortex (MI). Using an exoskeletal robot, the monkey\u27s arm was moved to passively follow a cortically controlled visual cursor, thereby providing the monkey with kinesthetic information about the motion of the cursor. When visual and proprioceptive feedback were congruent, both the time to successfully reach a target decreased and the cursor paths became straighter, compared with incongruent feedback conditions. This enhanced performance was accompanied by a significant increase in the amount of movement-related information contained in the spiking activity of neurons in MI. These findings suggest that BMI control can be significantly improved in paralyzed patients with residual kinesthetic sense and provide the groundwork for augmenting cortically controlled BMIs with multiple forms of natural or surrogate sensory feedback

    Multichannel surface EMG decomposition based on measurement correlation and LMMSE

    Get PDF
    A method based on measurement correlation (MC) and linear minimum mean square error (LMMSE) for multichannel surface electromyography (sEMG) signal decomposition was developed in this study. This MC-LMMSE method gradually and iteratively increases the correlation between an optimized vector and a reconstructed matrix that is correlated with the measurement matrix. The performance of the proposed MC-LMMSE method was evaluated with both simulated and experimental sEMG signals. Simulation results show that the MC-LMMSE method can successfully reconstruct up to 53 innervation pulse trains with a true positive rate greater than 95%. The performance of the MC-LMMSE method was also evaluated using experimental sEMG signals collected with a 64-channel electrode array from the first dorsal interosseous muscles of three subjects at different contraction levels. A maximum of 16 motor units were successfully extracted from these multichannel experimental sEMG signals. The performance of the MC-LMMSE method was further evaluated with multichannel experimental sEMG data by using the “two sources” method. The large population of common MUs extracted from the two independent subgroups of sEMG signals demonstrates the reliability of the MC-LMMSE method in multichannel sEMG decomposition

    Noninvasive electromyometrial imaging of human uterine maturation during term labor

    Get PDF
    Electromyometrial imaging (EMMI) was recently developed to image the three-dimensional (3D) uterine electrical activation during contractions noninvasively and accurately in sheep. Herein we describe the development and application of a human EMMI system to image and evaluate 3D uterine electrical activation patterns at high spatial and temporal resolution during human term labor. We demonstrate the successful integration of the human EMMI system during subjects\u27 clinical visits to generate noninvasively the uterine surface electrical potential maps, electrograms, and activation sequence through an inverse solution using up to 192 electrodes distributed around the abdomen surface. Quantitative indices, including the uterine activation curve, are developed and defined to characterize uterine surface contraction patterns. We thus show that the human EMMI system can provide detailed 3D images and quantification of uterine contractions as well as novel insights into the role of human uterine maturation during labor progression

    Relationship between Isometric Muscle Force and Fractal Dimension of Surface Electromyogram

    Get PDF
    The relationship between fractal dimension of the surface electromyogram (sEMG) and the intensity of muscle contraction is still controversial in simulated and experimental conditions. To support the use of fractal analysis to investigate myoelectric fatigue, it is crucial to establish the interdependence between fractal dimension and muscle contraction intensity. We analyzed the behavior of fractal dimension, conduction velocity, mean frequency, and average rectified value in twenty-eight volunteers at nine levels of isometric force. sEMG was obtained using bidimensional arrays in the biceps brachii muscle. The values of fractal dimension and mean frequency increased with force unless a plateau was reached at 30% maximal voluntary contraction. Overall, our findings suggest that, above a certain level of force, the use of fractal dimension to evaluate the myoelectric manifestations of fatigue may be considered, regardless of muscle contraction intensity

    Analysis of forearm muscles activity by means of new protocols of multichannel EMG signal recording and processing

    Get PDF
    Los movimientos voluntarios del cuerpo son controlados por el sistema nervioso central y periférico a través de la contracción de los músculos esqueléticos. La contracción se inicia al liberarse un neurotransmisor sobre la unión neuromuscular, iniciando la propagación de un biopotencial sobre la membrana de las fibras musculares que se desplaza hacia los tendones: el Potencial de Acción de la Unidad Motora (MUAP). La señal electromiográfica de superficie registra la activación continua de dichos potenciales sobre la superficie de la piel y constituye una valiosa herramienta para la investigación, diagnóstico y seguimiento clínico de trastornos musculares, así como para la identificación de la intención movimiento tanto en términos de dirección como de potencia. En el estudio de las enfermedades del sistema neuromuscular es necesario analizar el nivel de actividad, la capacidad de producción de fuerza, la activación muscular conjunta y la predisposición a la fatiga muscular, todos ellos asociados con factores fisiológicos que determinan la resultante contracción mioeléctrica. Además, el uso de matrices de electrodos facilita la investigación de las propiedades periféricas de las unidades motoras activas, las características anatómicas del músculo y los cambios espaciales en su activación, ocasionados por el tipo de tarea motora o la potencia de la misma. El objetivo principal de esta tesis es el diseño e implementación de protocolos experimentales y algoritmos de procesado para extraer información fiable de señales sEMG multicanal en 1 y 2 dimensiones del espacio. Dicha información ha sido interpretada y relacionada con dos patologías específicas de la extremidad superior: Epicondilitis Lateral y Lesión de Esfuerzo Repetitivo. También fue utilizada para identificar la dirección de movimiento y la fuerza asociada a la contracción muscular, cuyos patrones podrían ser de utilidad en aplicaciones donde la señal electromiográfica se utilice para controlar interfaces hombre-máquina como es el caso de terapia física basada en robots, entornos virtuales de rehabilitación o realimentación de la actividad muscular. En resumen, las aportaciones más relevantes de esta tesis son: * La definición de protocolos experimentales orientados al registro de señales sEMG en una región óptima del músculo. * Definición de índices asociados a la co-activación de diferentes músculos * Identificación de señales artefactuadas en registros multicanal * Selección de los canales mas relevantes para el análisis Extracción de un conjunto de características que permita una alta exactitud en la identificación de tareas motoras Los protocolos experimentales y los índices propuestos permitieron establecer que diversos desequilibrios entre músculos extrínsecos del antebrazo podrían desempeñar un papel clave en la fisiopatología de la epicondilitis lateral. Los resultados fueron consistentes en diferentes ejercicios y pueden definir un marco de evaluación para el seguimiento y evaluación de pacientes en programas de rehabilitación motora. Por otra parte, se encontró que las características asociadas con la distribución espacial de los MUAPs mejoran la exactitud en la identificación de la intención de movimiento. Lo que es más, las características extraídas de registros sEMG de alta densidad son más robustas que las extraídas de señales bipolares simples, no sólo por la redundancia de contacto implicada en HD-EMG, sino también porque permite monitorizar las regiones del músculo donde la amplitud de la señal es máxima y que varían con el tipo de ejercicio, permitiendo así una mejor estimación de la activación muscular mediante el análisis de los canales mas relevantes.Voluntary movements are achieved by the contraction of skeletal muscles controlled by the Central and Peripheral Nervous system. The contraction is initiated by the release of a neurotransmitter that promotes a reaction in the walls of the muscular fiber, producing a biopotential known as Motor Unit Action Potential (MUAP) that travels from the neuromuscular junction to the tendons. The surface electromyographic signal records the continuous activation of such potentials over the surface of the skin and constitutes a valuable tool for the diagnosis, monitoring and clinical research of muscular disorders as well as to infer motion intention not only regarding the direction of the movement but also its power. In the study of diseases of the neuromuscular system it is necessary to analyze the level of activity, the capacity of production of strength, the load-sharing between muscles and the probably predisposition to muscular fatigue, all of them associated with physiological factors determining the resultant muscular contraction. Moreover, the use of electrode arrays facilitate the investigation of the peripheral properties of the active Motor Units, the anatomical characteristics of the muscle and the spatial changes induced in their activation of as product of type of movement or power of the contraction.The main objective of this thesis was the design and implementation of experimental protocols, and algorithms to extract information from multichannel sEMG signals in 1 and 2 dimensions of the space. Such information was interpreted and related to pathological events associated to two upper-limb conditions: Lateral Epicondylitis and Repetitive Strain Injury. It was also used to identify the direction of movement and contraction strength which could be useful in applications concerning the use of biofeedback from EMG like in robotic- aided therapies and computer-based rehabilitation training.In summary, the most relevant contributions are:§The definition of experimental protocols intended to find optimal regions for the recording of sEMG signals. §The definition of indices associated to the co- activation of different muscles. §The detection of low-quality signals in multichannel sEMG recordings.§ The selection of the most relevant EMG channels for the analysis§The extraction of a set of features that led to high classification accuracy in the identification of tasks.The experimental protocols and the proposed indices allowed establishing that imbalances between extrinsic muscles of the forearm could play a key role in the pathophysiology of lateral epicondylalgia. Results were consistent in different types of motor task and may define an assessment framework for the monitoring and evaluation of patients during rehabilitation programs.On the other hand, it was found that features associated with the spatial distribution of the MUAPs improve the accuracy of the identification of motion intention. What is more, features extracted from high density EMG recordings are more robust not only because it implies contact redundancy but also because it allows the tracking of (task changing) skin surface areas where EMG amplitude is maximal and a better estimation of muscle activity by the proper selection of the most significant channels
    corecore