3,762 research outputs found

    Development of bent-up triangular tab shear transfer (BTTST) enhancement in cold-formed steel (CFS)-concrete composite beams

    Get PDF
    Cold-formed steel (CFS) sections, have been recognised as an important contributor to environmentally responsible and sustainable structures in developed countries, and CFS framing is considered as a sustainable 'green' construction material for low rise residential and commercial buildings. However, there is still lacking of data and information on the behaviour and performance of CFS beam in composite construction. The use of CFS has been limited to structural roof trusses and a host of nonstructural applications. One of the limiting features of CFS is the thinness of its section (usually between 1.2 and 3.2 mm thick) that makes it susceptible to torsional, distortional, lateral-torsional, lateral-distortional and local buckling. Hence, a reasonable solution is resorting to a composite construction of structural CFS section and reinforced concrete deck slab, which minimises the distance from the neutral-axis to the top of the deck and reduces the compressive bending stress in the CFS sections. Also, by arranging two CFS channel sections back-to-back restores symmetricity and suppresses lateraltorsional and to a lesser extent, lateral-distortional buckling. The two-fold advantages promised by the system, promote the use of CFS sections in a wider range of structural applications. An efficient and innovative floor system of built-up CFS sections acting compositely with a concrete deck slab was developed to provide an alternative composite system for floors and roofs in buildings. The system, called Precast Cold-Formed SteelConcrete Composite System, is designed to rely on composite actions between the CFS sections and a reinforced concrete deck where shear forces between them are effectively transmitted via another innovative shear transfer enhancement mechanism called a bentup triangular tab shear transfer (BTTST). The study mainly comprises two major components, i.e. experimental and theoretical work. Experimental work involved smallscale and large-scale testing of laboratory tests. Sixty eight push-out test specimens and fifteen large-scale CFS-concrete composite beams specimens were tested in this program. In the small-scale test, a push-out test was carried out to determine the strength and behaviour of the shear transfer enhancement between the CFS and concrete. Four major parameters were studied, which include compressive strength of concrete, CFS strength, dimensions (size and angle) of BTTST and CFS thickness. The results from push-out test were used to develop an expression in order to predict the shear capacity of innovative shear transfer enhancement mechanism, BTTST in CFS-concrete composite beams. The value of shear capacity was used to calculate the theoretical moment capacity of CFSconcrete composite beams. The theoretical moment capacities were used to validate the large-scale test results. The large-scale test specimens were tested by using four-point load bending test. The results in push-out tests show that specimens employed with BTTST achieved higher shear capacities compared to those that rely only on a natural bond between cold-formed steel and concrete and specimens with Lakkavalli and Liu bent-up tab (LYLB). Load capacities for push-out test specimens with BTTST are ii relatively higher as compared to the equivalent control specimen, i.e. by 91% to 135%. When compared to LYLB specimens the increment is 12% to 16%. In addition, shear capacities of BTTST also increase with the increase in dimensions (size and angle) of BTTST, thickness of CFS and concrete compressive strength. An equation was developed to determine the shear capacity of BTTST and the value is in good agreement with the observed test values. The average absolute difference between the test values and predicted values was found to be 8.07%. The average arithmetic mean of the test/predicted ratio (n) of this equation is 0.9954. The standard deviation (a) and the coefficient of variation (CV) for the proposed equation were 0.09682 and 9.7%, respectively. The proposed equation is recommended for the design of BTTST in CFSconcrete composite beams. In large-scale testing, specimens employed with BTTST increased the strength capacities and reduced the deflection of the specimens. The moment capacities, MU ) e X p for all specimens are above Mu>theory and show good agreement with the calculated ratio (>1.00). It is also found that, strength capacities of CFS-concrete composite beams also increase with the increase in dimensions (size and angle) of BTTST, thickness of CFS and concrete compressive strength and a CFS-concrete composite beam are practically designed with partial shear connection for equal moment capacity by reducing number of BTTST. It is concluded that the proposed BTTST shear transfer enhancement in CFS-concrete composite beams has sufficient strength and is also feasible. Finally, a standard table of characteristic resistance, P t a b of BTTST in normal weight concrete, was also developed to simplify the design calculation of CFSconcrete composite beams

    Online Mapping-Based Navigation System for Wheeled Mobile Robot in Road Following and Roundabout

    Get PDF
    A road mapping and feature extraction for mobile robot navigation in road roundabout and road following environments is presented in this chapter. In this work, the online mapping of mobile robot employing the utilization of sensor fusion technique is used to extract the road characteristics that will be used with path planning algorithm to enable the robot to move from a certain start position to predetermined goal, such as road curbs, road borders, and roundabout. The sensor fusion is performed using many sensors, namely, laser range finder, camera, and odometry, which are combined on a new wheeled mobile robot prototype to determine the best optimum path of the robot and localize it within its environments. The local maps are developed using an image’s preprocessing and processing algorithms and an artificial threshold of LRF signal processing to recognize the road environment parameters such as road curbs, width, and roundabout. The path planning in the road environments is accomplished using a novel approach so called Laser Simulator to find the trajectory in the local maps developed by sensor fusion. Results show the capability of the wheeled mobile robot to effectively recognize the road environments, build a local mapping, and find the path in both road following and roundabout

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Electrophysiologic assessment of (central) auditory processing disorder in children with non-syndromic cleft lip and/or palate

    Get PDF
    Session 5aPP - Psychological and Physiological Acoustics: Auditory Function, Mechanisms, and Models (Poster Session)Cleft of the lip and/or palate is a common congenital craniofacial malformation worldwide, particularly non-syndromic cleft lip and/or palate (NSCL/P). Though middle ear deficits in this population have been universally noted in numerous studies, other auditory problems including inner ear deficits or cortical dysfunction are rarely reported. A higher prevalence of educational problems has been noted in children with NSCL/P compared to craniofacially normal children. These high level cognitive difficulties cannot be entirely attributed to peripheral hearing loss. Recently it has been suggested that children with NSCLP may be more prone to abnormalities in the auditory cortex. The aim of the present study was to investigate whether school age children with (NSCL/P) have a higher prevalence of indications of (central) auditory processing disorder [(C)APD] compared to normal age matched controls when assessed using auditory event-related potential (ERP) techniques. School children (6 to 15 years) with NSCL/P and normal controls with matched age and gender were recruited. Auditory ERP recordings included auditory brainstem response and late event-related potentials, including the P1-N1-P2 complex and P300 waveforms. Initial findings from the present study are presented and their implications for further research in this area —and clinical intervention—are outlined. © 2012 Acoustical Society of Americapublished_or_final_versio

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Learning Multi-Modal Self-Awareness Models Empowered by Active Inference for Autonomous Vehicles

    Get PDF
    For autonomous agents to coexist with the real world, it is essential to anticipate the dynamics and interactions in their surroundings. Autonomous agents can use models of the human brain to learn about responding to the actions of other participants in the environment and proactively coordinates with the dynamics. Modeling brain learning procedures is challenging for multiple reasons, such as stochasticity, multi-modality, and unobservant intents. A neglected problem has long been understanding and processing environmental perception data from the multisensorial information referring to the cognitive psychology level of the human brain process. The key to solving this problem is to construct a computing model with selective attention and self-learning ability for autonomous driving, which is supposed to possess the mechanism of memorizing, inferring, and experiential updating, enabling it to cope with the changes in an external world. Therefore, a practical self-driving approach should be open to more than just the traditional computing structure of perception, planning, decision-making, and control. It is necessary to explore a probabilistic framework that goes along with human brain attention, reasoning, learning, and decisionmaking mechanism concerning interactive behavior and build an intelligent system inspired by biological intelligence. This thesis presents a multi-modal self-awareness module for autonomous driving systems. The techniques proposed in this research are evaluated on their ability to model proper driving behavior in dynamic environments, which is vital in autonomous driving for both action planning and safe navigation. First, this thesis adapts generative incremental learning to the problem of imitation learning. It extends the imitation learning framework to work in the multi-agent setting where observations gathered from multiple agents are used to inform the training process of a learning agent, which tracks a dynamic target. Since driving has associated rules, the second part of this thesis introduces a method to provide optimal knowledge to the imitation learning agent through an active inference approach. Active inference is the selective information method gathering during prediction to increase a predictive machine learning model’s prediction performance. Finally, to address the inference complexity and solve the exploration-exploitation dilemma in unobserved environments, an exploring action-oriented model is introduced by pulling together imitation learning and active inference methods inspired by the brain learning procedure

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Learning Multi-Modal Self-Awareness Models Empowered by Active Inference for Autonomous Vehicles

    Get PDF
    Mención Internacional en el título de doctorFor autonomous agents to coexist with the real world, it is essential to anticipate the dynamics and interactions in their surroundings. Autonomous agents can use models of the human brain to learn about responding to the actions of other participants in the environment and proactively coordinates with the dynamics. Modeling brain learning procedures is challenging for multiple reasons, such as stochasticity, multi-modality, and unobservant intents. A neglected problem has long been understanding and processing environmental perception data from the multisensorial information referring to the cognitive psychology level of the human brain process. The key to solving this problem is to construct a computing model with selective attention and self-learning ability for autonomous driving, which is supposed to possess the mechanism of memorizing, inferring, and experiential updating, enabling it to cope with the changes in an external world. Therefore, a practical selfdriving approach should be open to more than just the traditional computing structure of perception, planning, decision-making, and control. It is necessary to explore a probabilistic framework that goes along with human brain attention, reasoning, learning, and decisionmaking mechanism concerning interactive behavior and build an intelligent system inspired by biological intelligence. This thesis presents a multi-modal self-awareness module for autonomous driving systems. The techniques proposed in this research are evaluated on their ability to model proper driving behavior in dynamic environments, which is vital in autonomous driving for both action planning and safe navigation. First, this thesis adapts generative incremental learning to the problem of imitation learning. It extends the imitation learning framework to work in the multi-agent setting where observations gathered from multiple agents are used to inform the training process of a learning agent, which tracks a dynamic target. Since driving has associated rules, the second part of this thesis introduces a method to provide optimal knowledge to the imitation learning agent through an active inference approach. Active inference is the selective information method gathering during prediction to increase a predictive machine learning model’s prediction performance. Finally, to address the inference complexity and solve the exploration-exploitation dilemma in unobserved environments, an exploring action-oriented model is introduced by pulling together imitation learning and active inference methods inspired by the brain learning procedure.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Marco Carli.- Secretario: Víctor González Castro.- Vocal: Nicola Conc

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • …
    corecore