14,830 research outputs found

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Social media for crisis management: clustering approaches for sub-event detection

    Get PDF
    Social media is getting increasingly important for crisis management, as it enables the public to provide information in different forms: text, image and video which can be valuable for crisis management. Such information is usually spatial and time-oriented, useful for understanding the emergency needs, performing decision making and supporting learning/training after the emergency. Due to the huge amount of data gathered during a crisis, automatic processing of the data is needed to support crisis management. One way of automating the process is to uncover sub-events (i.e., special hotspots) in the data collected from social media to enable better understanding of the crisis. We propose in the present paper clustering approaches for sub-event detection that operate on Flickr and YouTube data since multimedia data is of particular importance to understand the situation. Different clustering algorithms are assessed using the textual annotations (i.e., title, tags and description) and additional metadata information, like time and location. The empirical study shows in particular that social multimedia combined with clustering in the context of crisis management is worth using for detecting sub-events. It serves to integrate social media into crisis management without cumbersome manual monitoring

    Ranking and significance of variable-length similarity-based time series motifs

    Get PDF
    The detection of very similar patterns in a time series, commonly called motifs, has received continuous and increasing attention from diverse scientific communities. In particular, recent approaches for discovering similar motifs of different lengths have been proposed. In this work, we show that such variable-length similarity-based motifs cannot be directly compared, and hence ranked, by their normalized dissimilarities. Specifically, we find that length-normalized motif dissimilarities still have intrinsic dependencies on the motif length, and that lowest dissimilarities are particularly affected by this dependency. Moreover, we find that such dependencies are generally non-linear and change with the considered data set and dissimilarity measure. Based on these findings, we propose a solution to rank those motifs and measure their significance. This solution relies on a compact but accurate model of the dissimilarity space, using a beta distribution with three parameters that depend on the motif length in a non-linear way. We believe the incomparability of variable-length dissimilarities could go beyond the field of time series, and that similar modeling strategies as the one used here could be of help in a more broad context.Comment: 20 pages, 10 figure
    corecore