1,126 research outputs found

    Key concepts of group pattern discovery algorithms from spatio-temporal trajectories

    Get PDF
    Over the years, the increasing development of location acquisition devices have generated a significant amount of spatio-temporal data. This data can be further analysed in search for some interesting patterns, new information, or to construct predictive models such as next location prediction. The goal of this paper is to contribute to the future research and development of group pattern discovery algorithms from spatio-temporal data by providing an insight into algorithms design in this research area which is based on a comprehensive classification of state-of-the-art models. This work includes static, big data as well as data stream processing models which to the best of authors’knowledge is the first attempt of presenting them in this context.Furthermore, the currently available surveys and taxonomies in this research area do not focus on group pattern mining algorithms nor include the state-of-the-art models. The authors conclude with the proposal of a conceptual model of Universal,Streaming, Distributed and Parameter-light (UDSP) algorithm that addresses current challenges in this research area

    NEW METHODS FOR MINING SEQUENTIAL AND TIME SERIES DATA

    Get PDF
    Data mining is the process of extracting knowledge from large amounts of data. It covers a variety of techniques aimed at discovering diverse types of patterns on the basis of the requirements of the domain. These techniques include association rules mining, classification, cluster analysis and outlier detection. The availability of applications that produce massive amounts of spatial, spatio-temporal (ST) and time series data (TSD) is the rationale for developing specialized techniques to excavate such data. In spatial data mining, the spatial co-location rule problem is different from the association rule problem, since there is no natural notion of transactions in spatial datasets that are embedded in continuous geographic space. Therefore, we have proposed an efficient algorithm (GridClique) to mine interesting spatial co-location patterns (maximal cliques). These patterns are used as the raw transactions for an association rule mining technique to discover complex co-location rules. Our proposal includes certain types of complex relationships – especially negative relationships – in the patterns. The relationships can be obtained from only the maximal clique patterns, which have never been used until now. Our approach is applied on a well-known astronomy dataset obtained from the Sloan Digital Sky Survey (SDSS). ST data is continuously collected and made accessible in the public domain. We present an approach to mine and query large ST data with the aim of finding interesting patterns and understanding the underlying process of data generation. An important class of queries is based on the flock pattern. A flock is a large subset of objects moving along paths close to each other for a predefined time. One approach to processing a “flock query” is to map ST data into high-dimensional space and to reduce the query to a sequence of standard range queries that can be answered using a spatial indexing structure; however, the performance of spatial indexing structures rapidly deteriorates in high-dimensional space. This thesis sets out a preprocessing strategy that uses a random projection to reduce the dimensionality of the transformed space. We use probabilistic arguments to prove the accuracy of the projection and to present experimental results that show the possibility of managing the curse of dimensionality in a ST setting by combining random projections with traditional data structures. In time series data mining, we devised a new space-efficient algorithm (SparseDTW) to compute the dynamic time warping (DTW) distance between two time series, which always yields the optimal result. This is in contrast to other approaches which typically sacrifice optimality to attain space efficiency. The main idea behind our approach is to dynamically exploit the existence of similarity and/or correlation between the time series: the more the similarity between the time series, the less space required to compute the DTW between them. Other techniques for speeding up DTW, impose a priori constraints and do not exploit similarity characteristics that may be present in the data. Our experiments demonstrate that SparseDTW outperforms these approaches. We discover an interesting pattern by applying SparseDTW algorithm: “pairs trading” in a large stock-market dataset, of the index daily prices from the Australian stock exchange (ASX) from 1980 to 2002

    Visual mining of moving flock patterns in large spatio-temporal data sets using a frequent pattern approach

    Get PDF
    The popularity of tracking devices continues to contribute to increasing volumes of spatio-temporal data about moving objects. Current approaches in analysing these data are unable to capture collective behaviour and correlations among moving objects. An example of these types of patterns is moving flocks. This article develops an improved algorithm for mining such patterns following a frequent pattern discovery approach, a well-known task in traditional data mining. It uses transaction-based data representation of trajectories to generate a database that facilitates the application of scalable and efficient frequent pattern mining algorithms. Results were compared with an existing method (Basic Flock Evaluation or BFE) and are demonstrated for both synthetic and real data sets with a large number of trajectories. The results illustrate a significant performance increase. Furthermore, the improved algorithm has been embedded into a visual environment that allows manipulation of input parameters and interactive recomputation of the resulting flocks. To illustrate the visual environment a data set containing 30 years of tropical cyclone tracks with 6 hourly observations is used. The example illustrates how the visual environment facilitates exploration and verification of flocks by changing the input parameters and instantly showing the spatio-temporal distribution of the resulting flocks in the Space-Time Cube and interactively selecting

    Towards Distributed Convoy Pattern Mining

    Full text link
    Mining movement data to reveal interesting behavioral patterns has gained attention in recent years. One such pattern is the convoy pattern which consists of at least m objects moving together for at least k consecutive time instants where m and k are user-defined parameters. Existing algorithms for detecting convoy patterns, however do not scale to real-life dataset sizes. Therefore a distributed algorithm for convoy mining is inevitable. In this paper, we discuss the problem of convoy mining and analyze different data partitioning strategies to pave the way for a generic distributed convoy pattern mining algorithm.Comment: SIGSPATIAL'15 November 03-06, 2015, Bellevue, WA, US
    • …
    corecore