15,247 research outputs found

    Indicators for measuring satisfaction towards design quality of buildings

    Get PDF
    Design quality is an important component in measuring satisfaction towards total product quality (TPQ) of buildings, the product of construction projects. Design Quality Indicator (DQI), developed by the Construction Industry Council (CIC) in the UK looking at three quality fields, i.e. functionality, build quality, and impact of building in measuring the quality of design embodied in the buildings through feedback and perceptions of all stakeholders involved in the production and use of buildings. Design quality is always a major concern in the Malaysian construction industry. With inspiration from this DQI, this study was carried out to identify indicators for measuring the satisfaction towards design quality of buildings and to evaluate the suitability of the indicators for application in the context of Malaysian construction industry. Through literature survey, 32 indicators of design quality were identified and grouped into the three design quality fields. A questionnaire survey was carried out among Malaysian construction professionals (architects, engineers, quantity surveyors, contractors and developers) to assess the identified design quality indicators in terms of their relevance and significance in the context of construction industry in Malaysia. The survey reveals that access, natural lighting, access and use, structure element, landscape, finishes, location, external environment, urban and social integration and noise are among the design quality indicators that were perceived as the most important to be looked at. In overall, all the indicators are relevant for adoption in the Malaysian construction industry to measure the satisfaction towards design quality of buildings

    Quantitative infrared thermography resolved leakage current problem in cathodic protection system

    Get PDF
    Leakage current problem can happen in Cathodic Protection (CP) system installation. It could affect the performance of underground facilities such as piping, building structure, and earthing system. Worse can happen is rapid corrosion where disturbance to plant operation plus expensive maintenance cost. Occasionally, if it seems, tracing its root cause could be tedious. The traditional method called line current measurement is still valid effective. It involves isolating one by one of the affected underground structures. The recent methods are Close Interval Potential Survey and Pipeline Current Mapper were better and faster. On top of the mentioned method, there is a need to enhance further by synthesizing with the latest visual methods. Therefore, this paper describes research works on Infrared Thermography Quantitative (IRTQ) method as resolution of leakage current problem in CP system. The scope of study merely focuses on tracing the root cause of leakage current occurring at the CP system lube base oil plant. The results of experiment adherence to the hypothesis drawn. Consequently, res

    Graphical user interface (GUI) for supervisory control of computer intergtated manufacturing (CIM-70A) using SCADA

    Get PDF
    Supervisory Control system and the Acquisition Data or SCADA is generalization of effective plant monitoring and conU'ol system in meeting production needs etc. The aim of the study is to prepare a SCADA system for AS/RS, functional Mechatronics Educational Material which simulates to real-life production system. Graphical control buttons to the system will be design to perform single or multiple tasks. The software is form Citect Pty. Limited called Citect SCADA. This project will be discussed as it applied in a CIM-70A at Mechatronic Laboratory of UTHM. Designing a controlling and monitoring system not only for AS/RS but it is also a way providing up-to-date data. It will provide system operators with central or local control using clear, concise, resizable graphics pages (screens). Graphical control buttons to the system will be design to perform single or multiple tasks. In the last chapter, some methodologies for solving the problem as well as to improve the SCADA are proposed

    Data fusion by using machine learning and computational intelligence techniques for medical image analysis and classification

    Get PDF
    Data fusion is the process of integrating information from multiple sources to produce specific, comprehensive, unified data about an entity. Data fusion is categorized as low level, feature level and decision level. This research is focused on both investigating and developing feature- and decision-level data fusion for automated image analysis and classification. The common procedure for solving these problems can be described as: 1) process image for region of interest\u27 detection, 2) extract features from the region of interest and 3) create learning model based on the feature data. Image processing techniques were performed using edge detection, a histogram threshold and a color drop algorithm to determine the region of interest. The extracted features were low-level features, including textual, color and symmetrical features. For image analysis and classification, feature- and decision-level data fusion techniques are investigated for model learning using and integrating computational intelligence and machine learning techniques. These techniques include artificial neural networks, evolutionary algorithms, particle swarm optimization, decision tree, clustering algorithms, fuzzy logic inference, and voting algorithms. This work presents both the investigation and development of data fusion techniques for the application areas of dermoscopy skin lesion discrimination, content-based image retrieval, and graphic image type classification --Abstract, page v

    Improving Knowledge-Based Systems with statistical techniques, text mining, and neural networks for non-technical loss detection

    Get PDF
    Currently, power distribution companies have several problems that are related to energy losses. For example, the energy used might not be billed due to illegal manipulation or a breakdown in the customer’s measurement equipment. These types of losses are called non-technical losses (NTLs), and these losses are usually greater than the losses that are due to the distribution infrastructure (technical losses). Traditionally, a large number of studies have used data mining to detect NTLs, but to the best of our knowledge, there are no studies that involve the use of a Knowledge-Based System (KBS) that is created based on the knowledge and expertise of the inspectors. In the present study, a KBS was built that is based on the knowledge and expertise of the inspectors and that uses text mining, neural networks, and statistical techniques for the detection of NTLs. Text mining, neural networks, and statistical techniques were used to extract information from samples, and this information was translated into rules, which were joined to the rules that were generated by the knowledge of the inspectors. This system was tested with real samples that were extracted from Endesa databases. Endesa is one of the most important distribution companies in Spain, and it plays an important role in international markets in both Europe and South America, having more than 73 million customers

    Method of lines and runge-kutta method in solving partial differential equation for heat equation

    Get PDF
    Solving the differential equation for Newton’s cooling law mostly consists of several fragments formed during a long time to solve the equation. However, the stiff type problems seem cannot be solved efficiently via some of these methods. This research will try to overcome such problems and compare results from two classes of numerical methods for heat equation problems. The heat or diffusion equation, an example of parabolic equations, is classified into Partial Differential Equations. Two classes of numerical methods which are Method of Lines and Runge-Kutta will be performed and discussed. The development, analysis and implementation have been made using the Matlab language, which the graphs exhibited to highlight the accuracy and efficiency of the numerical methods. From the solution of the equations, it showed that better accuracy is achieved through the new combined method by Method of Lines and Runge-Kutta method

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS
    • …
    corecore